UNIVERSITY OF LUCKNOW MASTERS IN ZOOLOGY

PROGRAMME BROCHURE

(Proposed to be implemented from July 2020)

Head, Department of Zoology 15 February 2021

CONTENTS

		Page
I.	About the Department	2
II.	Introduction to CBCS	2
	Definitions	2
	Regulation 2020	4
	Programme Objectives (POs)	4
	Programme Specific Outcomes (PSOs)	4
	Programme Structure	5
	Timeline for completion of credits	6
	Course Structure	7
	Electives	8
	MOOC Course Sites	8
	Dissertation	9
	Value Added (Credited/ Non Credit) Course Scheme	10
	Interdepartmental and Intradepartmental Courses	10
	M.Sc. Zoology Course (Semester Wise)	11
	Selection of Elective Courses	13
	Teaching	13
	Assessment of Students' Performance and Scheme of Examination	14
	Pass Percentage & Promotion Criteria:	14
	Conversion of Marks into Grades	14
	Grade Points	14
	CGPA Calculation	15
	Division of Degree into Classes	15
	Attendance Requirement	15
	Span Period	15
	Guidelines for the Award of Internal Assessment Marks	15
III.	Course Wise Content Details for M.Sc. Zoology Programme	16-85

About the Department

The Department of Zoology, University of Lucknow, shares its birth with that of the university itself, the year 1921. Zoology is one of the founding departments and main stays of the university and was formed as a result of the bifurcation of the Department of Biology, Canning College. The roots of the department were strengthened by the initial leadership of the officiating head, Dr. G.S. Thapar (Ph.D. London, 1925), and then by the first Head of Department, Dr. K.N. Bahl (D.Sc., D.Phil., Oxford, 1921) in 1923. He successfully nurtured the department till 1950 into an establishing ground and leading light for many Zoology departments of the country. He was succeeded by Prof. G.S. Thapar, who laid the foundation for Helminthology in the country. The next Head, Prof. M.B. Lal, added new heights to the field of Physiology and Experimental Zoology. Later the other faculty also joined the department and carried forward the tradition. The department has been identified as UGC-SAP (DRS-I & II), DST-FIST, DST-PURSE and Centre of Excellence (Dept. of Higher Education, Govt. UP) department.

Current faculty members are contributing in the areas of Protozoology, Parasitology, Environmental Toxicology, Entomology, Chronobiology, Endocrinology, Neurobiology, Fisheries, Human Genetics, Molecular Biology, Bone Biology and Wildlife.

Introduction to CBCS (Choice Based Credit System)

The curriculum based on CBCS pattern provides an opportunity to the students to choose from a range of prescribed courses based on their interests. The CBCS course structure comprises of the core and elective/minor or skill-based content and the evaluation is based on the grading system, which is considered better than the conventional marks system. The grading system provides uniformity in evaluation and computation of the Cumulative Grade Point Average (CGPA) based on student's performance in examinations, which may help students to move across institutions of higher learning. The uniformity in evaluation system can be helpful to employers in assessing the performance of the candidates.

Definitions

- 1. 'Academic Programme' means an entire course of study that comprises of its structure, course details, evaluation schemes etc. designed to be taught and evaluated in a teaching Department/Centre or jointly under more than one such Department/ Centre.
- 2. 'Course' is part of an Academic Programme.
- 3. 'Programme Structure' means a list of courses (Core, Elective, Value added: credited and non-credited, Interdepartmental and Intradepartmental Course) that makes up an academic programme, describing the syllabus, credits, teaching hours, evaluation and examination schemes, minimum number of credits required for successful completion of the programme etc. prepared in conformity to University rules.
- 5. 'Core Course' is a particular programme in which the student is admitted to, and which must be successfully completed to receive the degree. The core course cannot be substituted by any other course.
- 6. 'Elective Course' is an optional departmental course. Each Elective has multiple papers within it, which cannot be substituted or changed. Once the student opts for an Elective, they would be required to study all the included papers across semesters.

- 'Interdepartmental Course' is an elective course which is available for students of faculties other than Faculty of Science.
- 'Intradepartmental Course' is an elective course which is available for students of same as well as departments other than Zoology but of the same faculty (here Faculty of Science).
- 'Value added Courses; Credited and Non-Credited' are conducted by the department to complement the students' knowledge and skills in their field of study. The Courses offered are chosen based on the current trends and relevance having holistic approach.
- 7. 'Credit' means the value assigned to a course which indicates the level of instruction; One hour lecture per week equals 1 credit, 2 hours practical class per week equals 1 credit. The credit for practical could be proposed as part of a course or as a separate practical course.
- 8. 'SGPA' means Semester Grade Point Average calculated for individual semester.
- 9. 'CGPA' is Cumulative Grade Points Average calculated for all courses completed by the students at any point of time. CGPA is calculated each year for both the semesters clubbed together.
- 10. 'Grand CGPA' is calculated in the last year of the course by clubbing together of CGPA of two years, i.e., four semesters. Grand CGPA is being given in Transcript form. To benefit the student a formula for conversation of Grand CGPA into %age is given in the Transcript.

University of Lucknow Masters of Science Programme Regulations 2020

1. Applicability

These regulations shall apply to the Master in Zoology programme from the session 2020 – 21.

2. Minimum Eligibility for admission:

A three/ four-year Bachelor's degree or equivalent in Zoology awarded by a University or Institute established as per law and recognised as equivalent by this University with minimum 45% percentage marks or equivalent grade, shall constitute the minimum requirement for admission to the Master in Zoology programme.

3. Programme Objectives (POs):

The Department of Zoology at University of Lucknow is known for the classical Zoology courses such as Taxonomy, Entomology, Parasitology and Physiology. In later times, modern courses such as Genetics, Cell and Molecular Biology, Chronobiology and Endocrinology were also introduced. Keeping in mind that tradition, the course has been designed in such a way to equip the students with both classical and modern aspects of Zoology. It aims to enable the students to study the animal diversity in Indian subcontinent and appreciate other areas of Zoology such as Aquaculture, Reproductive health, Behavior and Biological time keeping, Cancer Biology, Parasites, and their roles in health and diseases, Bioremediation of pollutants and pesticides, etc.

The elective courses are divided into 4 groups specific to the department and the students will opt one of them. Besides these, there are (a) interdepartmental course of interfaculty nature, (b) intradepartmental course of inter-department nature. The department also offers value added credit/ non-credit courses of general importance for the students.

The dissertation in the courses provided will be allotted to the students in Semester III and will be evaluated in Semester IV.

The Master's program in Zoology is designed to:

- make students aware of and appreciate the animal diversity at different levels (behavioural, physiological, biochemical and molecular levels etc.)
- develop a comprehensive understanding of the field through an array of classes (lectures, tutorials, demonstration, group discussion, assignments etc.)
- cope up with the challenges arising out of the complexities and limitations of biological system.
- help the students to give a holistic view of subject and prepare them for next level of learning.

4. Programme Specific Outcomes (PSOs)

• Help students to understand life-environment interaction.

4

- Help them in understanding the intricacies of the subject at advanced level and develop the skills to opt for research programs.
- Help students to explore newer areas such as conservation and management of animal kingdom.
- Zoological knowledge and theories are applicable to maintain health and to control the epidemic diseases.
- Students can venture into the industry e.g. various animals such as coral, pearl, honey, wax, silk, lac, shell of turtle, bones, feather, tusk, leather and fur are of high demand.
- equip them to disseminate the knowledge at different levels of education.

5. Programme Structure:

The M.Sc. in Zoology programme is a two-year course divided into four semesters, each semester is of six months duration. Students would have the option of exiting after successful completion of first year of the programme, with a Diploma Degree in Zoology. To earn a Diploma Degree, a student would need to successfully complete 48 credits of First Year (two semesters) of the Programme. The 2-year full-time Masters' degree in Zoology with 96 credits shall be the preferred option as it provides the full range of subject education including Internship and Master Thesis.

Year	Semester	Semester	Credits
First year	Semester I	Semester II	
Optional	48		
Second year	Semester III	Semester IV	
Preferred and	Final Exit point 2 with a Ma	sters' Degree in Zoology	96

Course Credit Scheme

Semester	Core Course/ MOOCs**		Ele	ective Co	urse	Inter/ Intra-		Credit/ Non Credit		Credit	Total		
							Departmental Course		Value added Courses		Credits		
	No. of	Credits	Total	No. of	Credits	Total	No. of	Credits	Total	No. of	Credits	Total	
	Papers	(T+L)	Credits	Papers	(T+L)	Credits	Papers	(T)	Credits	Papers	(T)	Credits	
I	4	12T+8L	20	-	-	-	-	-	-	1	4	4	24
II	4	16T+8L	24	-	-	-	-	-	-	1	-	-	24
III	2	8T+4F	12	2	8T	4	1	4	4	-			24
IV	-	4T+8D	12	2	4T+4L	8	1	4	4	-			24
Total													96
Course													
Credits													

- For each Core and Elective Courses (4 credit each), there will be 4 hours of theory teaching per week. For lab (1 credit) there will be two hours of lab work every week. Therefore, for 8 credit lab, there will be 16 hours of lab work every week.
- Summer Internship/ Field Work will be of 4 credit and Dissertation of 8 credit.

- Inter- and Intradepartmental Courses will be of 4 credits each in Semester III and IV respectively.
- 1 Credit (4 credits) and 1 Non Credit Value added course is offered in each semester I and II respectively.
- Codes: T, L, F or D defines as Theory, Lab, Summer Internship/ Field Work or Master Thesis/ Dissertation, respectively.

Distribution Scheme of Credits

SEMESTER	SEM I	SEM II	SEM III	SEM IV
CORE COURSES				
VALUE ADDED CREDIT COURSE				
VALUE ADDED NON- CREDIT COURSE				
MOOC				
SUMMER INTERNSHIP/ FIELD WORK				
INTRADEPARTMENTAL COURSE				
ELECTIVE				
INTERDEPARTMENTAL COURSE				
MASTER THESIS/ DISSERTATION				

6. Course Structure:

The course structure of the Master in Zoology programme shall be as under:

Semester wise Details of M.Sc. Zoology Course

Course No.	Name of the Course	Credit	Remark
	Semester I		
ZOOLCC-101	Non Chordata	04	Core Course
ZOOLCC-102	Animal Physiology	04	Core Course
ZOOLCC-103	Biochemistry and Cell Biology	04	Core Course
ZOOLCC-104	Lab based on ZOOLCC-101	04	Core Course
ZOOLCC-105	Lab based on ZOOLCC102-103	04	Core Course
ZOOLVC-101	Biodiversity and Conservation	04	Value added course (Credited)
	Semester Total	24	
	Semester II		
ZOOLCC-201	Chordata	04	Core Course
ZOOLCC-202	Developmental Biology and Immunology	04	Core Course
ZOOLCC-203	Quantitative biology and Bioinstrumentation	04	Core Course
ZOOLCC-204	Animal Behaviour and Chronobiology	04	Core Course
ZOOLCC-205	Lab based on ZOOLCC201-202	04	Core Course
ZOOLCC-206	Lab based on ZOOLCC203-204	04	Core Course
ZOOLVNC-201	Physiology of Stress and Yoga	00	Value added course (Non Credited)
	Semester Total	24	Credited)
	Semester III		
ZOOLCC-301	Biosystematics, Evolutionary Biology and Biodiversity	04	Core Course/ MOOC
ZOOLCC-302	Environmental Biology, Wildlife and Toxicology	04	Core Course
ZOOLEL-301A	Principles of Endocrinology	04	Elective
ZOOLEL-301B	Insect Taxonomy, Morphology and Ecology		
ZOOLEL-301C	Fish Biology and Genetic Resources		
ZOOLEL-301D	General parasitology		
ZOOLEL-302A	Biology of Reproduction	04	Elective
ZOOLEL-302B	Insect Physiology		
ZOOLEL-302C	Fish Ecology, Aquaculture and Capture Fisheries		
ZOOLEL-302D	Biology of Parasites		
ZOOLIN-301	Summer Internship/ Field Work	04	Summer Internship
ZOOLIER-301	Public Health	04	Interdepartmental Course
	Semester Total	24	
	Semester IV		
ZOOLCC-401	Molecular Biology and Genetics	04	Core Course
ZOOLEL-401A	Endocrine disorders and their diagnostics	04	Elective
ZOOLEL-401B	Applied Entomology and Pest Management		
ZOOLEL-401C	Applied Fish and Fisheries		
ZOOLEL-401D	Parasitological Techniques		
ZOOLEL-402A	Lab based on ZOOLEL301A, 302A, 401A	04	Elective
ZOOLEL-402B	Lab based on ZOOLEL301B, 302B, 401B		
ZOOLEL-402C	Lab based on ZOOLEL301C, 302C, 401C		
ZOOLEL-402D	Lab based on ZOOLEL301D, 302D, 401D	00	N. C. A. CDU
ZOOLMT-401	Master Thesis/ Dissertation	08	Master Thesis
ZOOLIRA-401	Scientific Writing and Communication	04	Intradepartmental Course
	Semester Total	24	
	GRAND TOTAL	96	

ZOOL – Zoology; ZOOLCC – Core Course; ZOOLVC – Value added course (Credited); ZOOLVNC - Value added course (Non Credited); ZOOLEL – Elective; ZOOLIN – Summer Internship/ Field Work; ZOOLIER – Interdepartmental Course; ZOOLMT – Master Thesis/ Dissertation; ZOOLIRA – Intradepartmental Course.

I. Electives

A. Endocrinology and Reproductive Physiology

ZOOLEL-301A	Principles of Endocrinology
ZOOLEL-302A	Biology of Reproduction

ZOOLEL-401A Endocrine disorders and their diagnostics

B. Entomology

ZOOLEL-301B	Insect Taxonomy, Morphology and Ecology
ZOOLEL-302B	Insect Physiology
ZOOLEL-401B	Applied Entomology and Pest Management

C. Fish and Fisheries

ZOOLEL-301C	Fish Biology and Genetic Resources
ZOOLEL-302C	Fish Ecology, Aquaculture and Capture Fisheries
ZOOLEL-401C	Applied Fish and Fisheries

D. Parasitology

ZOOLEL-301D	General parasitology
ZOOLEL-302D	Biology of Parasites
ZOOLEL-401D	Parasitological Techniques

II. MOOCs

Some of the links for MOOCs are as follows:

https://www.swayam.gov.in

https://www.edx.org/course/subject/biology-life-sciences

https://online-learning.harvard.edu/subject/biology

https://online.stanford.edu/courses

http://www.openculture.com/freeonlinecourses

III. Dissertation

ZOOLMT-401A	Chronobiology
ZOOLMT-401B	Endocrinology and Reproductive Physiology
ZOOLMT-401C	Entomology
ZOOLMT-401D	Evolutionary Biology
ZOOLMT-401E	Fish and Fisheries
ZOOLMT-401F	Human Genetics
ZOOLMT-401G	Molecular Biology
ZOOLMT-401H	Parasitology
ZOOLMT-401I	Toxicology
ZOOLMT-401J	Wild life and Biodiversity

Allotment and evaluation of dissertation will be done in Semester III and Semester IV, respectively.

The student will submit dissertation preferably supported by short publications.

The dissertation will be evaluated at the end of Semester IV in two stages.

Stage I: The Evaluation Committee will consist of supervisor, one senior faculty member and the Head of the Department. After evaluation, this three member committee will provide 'Grade' which will cover 70% of the total marks.

Stage II: The candidate will present his work to the external examiner appointed by the BOS and will cover 30% of the total marks.

IV: Value Added Course Scheme

Semester	Course	Value Added	Value Added Non-	Credits	Total
		Credited Course	Credited Course		Lectures
I	ZOOLVC-101	Biodiversity and Conservation	-	4	60
II	ZOOLVNC-201	-	Physiology of Stress and Yoga	-	60
TOTAL				4	120

V: Interdepartmental/ Intradepartmental Courses

Semester	Course	TO	Credits	Total	
		Interdepartmental	Interdepartmental Intradepartmental		Lectures
		Course	Course		
III	ZOOLIER-301	Public Health	-	4	60
IV	ZOOLIRA-401	-	Scientific Writing and Communication	4	60
TOTAL				8	120

Semester wise Details of M.Sc. Zoology Course

Paper Codes: The first four letters (ZOOL) define the Subject, ZOOLCC is meant for Core Course, ZOOLVC defines the Value added course (Credited), ZOOLVNC defines the Value added course (Non Credited), ZOOLEL defines the Elective course, ZOOLIER stands for Interdepartmental Course, ZOOLIN defines the Summer Internship/ Field Work, ZOOLIER stands for Interdepartmental Course, ZOOLMT defines the Master Thesis/ Dissertation, and ZOOLIRA defines the Intradepartmental Course. The First numeral defines the semester and the remaining two numerals defines stream and the paper number.

•	merals defines stream and the paper number. s: Lectures, Mentoring, Tutorials, Group Discuss	ion. Assignm	nents and	l Ouizzes
Semester I	5. Dectares, Francising, Paterials, Oroup Biscuss	1011, 1 100151111	iones une	<u> Quilles</u>
Core courses		Credits		
Code	Course	**Theory Lab To		Total
ZOOLCC-101	Non-Chordata	4	-	4
ZOOLCC-102	Animal Physiology	4	-	4
ZOOLCC-103	Biochemistry and Cell Biology	4	-	4
ZOOLCC-104	Lab based on ZOOLCC-101	-	4	4
ZOOLCC-105	Lab based on ZOOLCC102-103	-	4	4
Core course 5 (to	otal number)	12	08	20
Credit Value Ad	ded Course	Credits		
ZOOLVC-101	Biodiversity and Conservation	4	-	4
Total credits in (Credit Value Added Course	4		'
Total credits in S	Semester I (Core and Credit Value Added Cou	rses) – 24		
Semester II				
Core courses		Credits		
Code	Course	**Theory	Lab	Total
ZOOLCC-201	Chordata	4	-	4
ZOOLCC-202	Developmental Biology and Immunology	4	-	4
ZOOLCC-203	Quantitative biology and Bioinstrumentation	4	-	4
ZOOLCC-204	Animal Behaviour and Chronobiology	4	-	4
ZOOLCC-205	Lab based on ZOOLCC201-202	-	4	4
ZOOLCC-206	Lab based on ZOOLCC203-204	-	4	4
Core course 6 (to	otal number)	16	08	24
Non Credit Valu	e Added Course	Credits		
ZOOVNC-201	Physiology of Stress and Yoga	-	-	-
Total credits in S	Semester I (Core and Non Credit Value Added	Courses) –	24	•
Semester III				
Core + Elective Courses Credits				
Code	Course	**Theory	Lab	Total
ZOOLCC-301	Biosystematics, Evolutionary Biology and		-	4
	Biodiversity			

ZOOLCC-302	Environmental Biology, Wildlife and Toxicology	4	-	4
ZOOLEL-301 (A-	Elective I	4	_	4
D)	Elective 1	•		-
ZOOLEL-302 (A-	Elective II	4		4
D)	Elective ii	•		-
ZOOLIN-301	Summer Internship/ Field Work (FW)	-	4	4
Core course 6 (total	al number)	16 4 20		
Total credits in Co	ore + Elective courses	20		
Interdepartmenta	l course	Credits		
A student from other	er Faculty has to opt for this Interdepartmental			
Course				
ZOOLIER-301	Public Health	4	-	4
Total credits in In	terdepartmental Course	4		·
Total credits in Se	mester III (Core, Elective and Interdepartme	ental Course	e) - 24	
Semester IV				
Definester 1 v				
Core + Elective		Credits		
	Course	Credits **Theory	Lab	Total
Core + Elective	Course Molecular Biology and Genetics		Lab	Total 4
Core + Elective Code		**Theory	Lab -	
Core + Elective Code ZOOLCC-401	Molecular Biology and Genetics	**Theory 4	Lab	4
Core + Elective Code ZOOLCC-401 ZOOLEL-401 (A-	Molecular Biology and Genetics	**Theory 4	Lab 4	4
Core + Elective Code ZOOLCC-401 ZOOLEL-401 (A-D)	Molecular Biology and Genetics Elective III	**Theory 4 4	-	4
Core + Elective Code ZOOLCC-401 ZOOLEL-401 (A-D) ZOOLEL-402 (A-	Molecular Biology and Genetics Elective III	**Theory 4 4	-	4
Core + Elective Code ZOOLCC-401 ZOOLEL-401 (A-D) ZOOLEL-402 (A-D)	Molecular Biology and Genetics Elective III Lab based on ZOOLEL301, 302, 401 (A-D) Master Thesis/ Dissertation (D)	**Theory 4 4	-	4 4
Core + Elective Code ZOOLCC-401 ZOOLEL-401 (A-D) ZOOLEL-402 (A-D) ZOOLMT-401 Course 3 (total nu	Molecular Biology and Genetics Elective III Lab based on ZOOLEL301, 302, 401 (A-D) Master Thesis/ Dissertation (D)	**Theory 4 4 - 8	4	4 4 8
Core + Elective Code ZOOLCC-401 ZOOLEL-401 (A-D) ZOOLEL-402 (A-D) ZOOLMT-401 Course 3 (total nu	Molecular Biology and Genetics Elective III Lab based on ZOOLEL301, 302, 401 (A-D) Master Thesis/ Dissertation (D) mber) ore + Elective courses	**Theory 4 4 8 16	4	4 4 8
Core + Elective Code ZOOLCC-401 ZOOLEL-401 (A-D) ZOOLEL-402 (A-D) ZOOLMT-401 Course 3 (total nu Total credits in Co	Molecular Biology and Genetics Elective III Lab based on ZOOLEL301, 302, 401 (A-D) Master Thesis/ Dissertation (D) mber) ore + Elective courses	**Theory 4 4 8 16 20	4	4 4 8
Core + Elective Code ZOOLCC-401 ZOOLEL-401 (A-D) ZOOLEL-402 (A-D) ZOOLMT-401 Course 3 (total nu Total credits in Co	Molecular Biology and Genetics Elective III Lab based on ZOOLEL301, 302, 401 (A-D) Master Thesis/ Dissertation (D) mber) ore + Elective courses I course other department has to opt for this	**Theory 4 4 8 16 20	4	4 4 8
Core + Elective Code ZOOLCC-401 ZOOLEL-401 (A-D) ZOOLEL-402 (A-D) ZOOLMT-401 Course 3 (total nu Total credits in Co Intradepartmenta A student from	Molecular Biology and Genetics Elective III Lab based on ZOOLEL301, 302, 401 (A-D) Master Thesis/ Dissertation (D) mber) ore + Elective courses I course other department has to opt for this	**Theory 4 4 8 16 20	4	4 4 8
Core + Elective Code ZOOLCC-401 ZOOLEL-401 (A-D) ZOOLEL-402 (A-D) ZOOLMT-401 Course 3 (total nu Total credits in Co Intradepartmental A student from Intradepartmental ZOOLIRA-401	Molecular Biology and Genetics Elective III Lab based on ZOOLEL301, 302, 401 (A-D) Master Thesis/ Dissertation (D) mber) ore + Elective courses I course other department has to opt for this Course	**Theory 4 4 8 16 20 Credits	4	4 4 8 20
Core + Elective Code ZOOLCC-401 ZOOLEL-401 (A-D) ZOOLEL-402 (A-D) ZOOLMT-401 Course 3 (total nu Total credits in Co Intradepartmental A student from Intradepartmental ZOOLIRA-401 Total credits in In	Molecular Biology and Genetics Elective III Lab based on ZOOLEL301, 302, 401 (A-D) Master Thesis/ Dissertation (D) mber) ore + Elective courses I course other department has to opt for this Course Scientific Writing and Communication	**Theory 4 4 8 16 20 Credits 4 4	- - 4 - 4	4 4 8 20
Core + Elective Code ZOOLCC-401 ZOOLEL-401 (A-D) ZOOLEL-402 (A-D) ZOOLMT-401 Course 3 (total nu Total credits in Co Intradepartmental A student from Intradepartmental of ZOOLIRA-401 Total credits in In	Molecular Biology and Genetics Elective III Lab based on ZOOLEL301, 302, 401 (A-D) Master Thesis/ Dissertation (D) mber) ore + Elective courses I course other department has to opt for this Course Scientific Writing and Communication tradepartmental Course	**Theory 4 4 8 16 20 Credits 4 4	- - 4 - 4	4 4 8 20

- 1. In the third and fourth semesters, a student has to choose one of the four electives. Each elective (**Elective Endocrinology and Reproductive Physiology:** ZOOLEL- 301A, 302A, 401A, 402A; **Entomology:** ZOOLEL- 301B, 302B, 401B, 402B; **Fish and Fisheries:** ZOOLEL- 301C, 302C, 401C, 402C; **Parasitology:** ZOOLEL- 301D, 302D, 401D, 402D) has Three papers and a practical based on these theory papers.
- 2. **Dissertation** There is a list of available titles from which the student will make his preferred choices and accordingly, he may opt to do a dissertation in the research laboratory

of the concerned Faculty members. This will be purely on mutual agreement between the student and the Faculty member. Upon successful completion of the dissertation (as certified by the concerned faculty member), the department would issue a certificate to the student.

Selection of Elective Courses:

1. Elective courses in Zoology:

The number of seats in each elective would be limited and will be announced before the commencement of the course in each year. The Selection of Elective papers in 3rd and 4th Semesters would be based on merit (performance in the First Semester Examination) and choice.

2. Interdepartmental and Intradepartmental Courses in Zoology:

There shall be total of 50 seats in both Interdepartmental and Intradepartmental Courses in Zoology. This number is the maximum intake of students in M.Sc. programme of the department. The selection of students shall be based on the merit prepared from the marks obtained in First and Second semesters of Masters' programme of their respective department.

Teaching:

There shall be 90 instructional days excluding examination in a semester.

The teaching methodology will include classroom lectures, seminars/ presentations, group discussions, mentoring, tutorials, field study/ report, case study, assignments, project writing, quiz, etc. and the theory should be at least 70% of the total workload.

Assessment of Students' Performance and Scheme of Examinations:

- 1. The medium of instruction and examination shall be English.
- 2. Assessment of students' performance shall consist of two components (i) Internal assessment (mid-semester) and (ii) end-semester examination. The timing shall be decided for these as per the Academic Calendar notified by the University of Lucknow.

A. The break-up of marks for credit course examinations will be:

Assessment Type	Theory course (mark distribution) 4 credits	
Internal Assessment		
(a) Examinations	15	
(b) Assignment/ Seminar/ Presentation	10	
(c) Attendance	05	
External Assessment		
(a) End semester Examination	70	
Total Marks	100	

- B. Each two and four credit lab course shall be evaluated at the end-semester examination for 50 and 100 marks respectively.
- C. Internal assessment will be broadly based on attendance in Theory and Lab (5 marks), assignments, seminars, presentations, quizzes and tests in the theory component (25 marks). These criteria are tentative and could be modified based on guidelines approved by the academic council.
- D. The question papers will be comprised of short, long and essay type questions.
- E. Examinations for courses shall be conducted only in the respective odd and even Semesters as per the Scheme of Examinations. Regular as well as Ex-students shall be permitted to appear/re-appear/improve in courses of Odd Semesters only at the end of Odd Semesters and courses of Even Semesters only at the end of Even Semesters.

Pass Percentage & Promotion Criteria

As per the rules of University of Lucknow.

Part I to Part II Progression

As per the rules of the University of Lucknow.

Conversion of Marks into Grades

As per the rules of the University of Lucknow.

Grade Points

Grade point table as per University Examination rule.

CGPA Calculation

As per University Examination rule.

SGPA Calculation:

As per University Examination rule.

Grand SGPA Calculation:

As per University Examination rule.

Conversion of Grand CGPA into Marks

As notified by competent authority the formula for conversion of Grand CGPA into marks is: Final %age of marks = CGPA based on all four semesters \times 9.5

Division of Degree into Classes

Post Graduate degree to be classified based on CGPA obtained into various classes as notified into Examination policy.

Attendance Requirement

No student shall be considered to have pursued a regular course of study unless he/she is certified by the Head of the Department of Zoology, University of Lucknow, to have attended 75% of the total number of theory and lab classes conducted in each semester, during his/her course of study.

Span Period

As per University rule.

Guidelines for the Award of Internal Assessment Marks in M.Sc. Zoology Programme (Semester Wise)

Internal assessment will be broadly based on attendance in Theory and Lab (5 marks), assignments, seminars, quizzes and tests in the theory component (25 marks). These criteria are tentative and could be modified based on guidelines approved by the academic council.

Semester I

ZOOLCC-101: Non-Chordata

Total Credits: 04	Teaching Hours: 60	
Course objectives		
• To create in the student an appreciation of non-chordate	diversity	
 To develop in the student an understanding of structural and functional diversity To develop in the student the understanding of evolutionary relationship amongs non-chordate groups 		
Protozoa		
Ultrastructure	01	
Osmoregulation	01	
Locomotion	01	
Nutrition	01	
Reproduction	01	
Porifera		
Cell types	01	
Skeleton	01	
Reproduction	01	
Cnidaria		
Origin of metazoan	01	
Polymorphism	01	
Metagenesis	01	
Corals	01	
Pigments	01	
Unit II		
Platyhelminthes		
Origin and evolution of bilateria	02	
Parasitic adaptations	01	
General organization of Trematoda and Cestoda	04	
Larval stages of Trematoda and Cestoda	02	
Life cycle patterns in Platyhelminthes	02	
Aschelminths		
General organization	02	
Economic importance of nematodes in animals and plants	02	
Unit III		
Annelida		
Coelom & Metamerism	0 1	

Adaptive radiation in Polychaeta	0 1
Segmental organs	0 1
Filter feeding	0 1
Arthropoda	
Organisation and affinities of Onychophora	02
Larval forms in Crustacea	0 1
Parasitism in Crustacea	0 1
Respiratory organs in Arthropods	0 1
General organization of Tardigrada	0 1
General organization of Pycnogonida	0 1
General organization of Trilobitomorpha	0 1
Unit IV	
Mollusca	
Foot and Radula	02
Respiration	0 1
Nervous system	0 1
Torsion in gastropods	02
Shell types	0 1
Echinodermata	
Origin of Deuterostomia	02
Water vascular system	0 1
Larval forms & affinities	02
Unit V	
Minor phyla	
General Organization and affinities of Rotifera	03
General Organization and affinities of Phoronida	02
General Organization and affinities of Ectoprocta	02
General Organization and affinities of Endoprocta	02
General Organization and affinities of Ctenophora	02

Student learning outcomes

The student at the completion of the course will be able to:

- demonstrate comprehensive identification abilities of non-chordate diversity
- describe structural and functional diversity of non-chordate
- explain evolutionary relationship amongst non-chordate groups

- 1. Barnes et al (2009). The Invertebrates: A synthesis. Wiley Backwell
- 2. Hunter: Life of Invertebrates (1979, Collier Macmillan)
- 3. Marshall: Parker & Haswell Text Book of Zoology, Vol. I (7th ed 1972, Macmillan)

- 4. Moore: An Introduction to the Invertebrates (2001, Cambridge University Press)
- 5. Brusca and Brusca (2016) Invertebrates. Sinauer
- 6. Jan Pechenik (2014) Biology of the invertebrates. McGraw Hill
- 7. Neilsen (2012). Animal Evolution: Interrelationships amongst living Phyla. Oxford

ZOOLCC-102: Animal Physiology

Teaching Hours: 60

Total Credits: 04

Course objectives

• To develop in the student an understanding of functioning of an organisms body		
• To develop in the student an understanding of the various home	ostatic systems of the	
body	•	
• To develop in the student an understanding of regulation of function	tion in the body	
Unit I		
Physiology of Digestion		
Digestion and absorption of proteins	01	
Digestion and absorption of carbohydrates	01	
Digestion and absorption of lipids	01	
Digestion and absorption of nucleic acids	01	
Regulation of digestion and absorption	01	
Physiology of Excretion		
Homeostasis	01	
Ion regulation	01	
Regulation of excretion	01	
Physiological responses to salinity changes	01	
Physiology of Thermoregulation		
Thermoregulation	01	
Thermoregulation based animal categories	02	
Acute and chronic metabolic responses to temperature change	01	
Thermal limits of individuals		
Mechanism of thermoregulation		
Unit II		
Physiology of respiration		
External respiration	01	
Internal respiration	02	
Gaseous exchange in terrestrial and aquatic animals	02	
Respiratory pigments	02	
Mechanism and regulation of respiration	02	
Physiology of circulation		
Pattern of circulation among different animal groups	02	
Haemodynamics	02	
Regulation of circulation	01	
Cardiac cycle	01	

Unit III Physiology of muscular system Types, function and properties of muscle tissue 01 Molecular organization of sarcomere 01 Molecular mechanism of striated muscle contraction 01 Molecular mechanism of smooth muscle contraction 01 Muscle metabolism 01 Regulation of muscle contraction 01 Neurophysiology Neuronal tissue 01 Structural Organization of Nervous System 01 Functional Organization of Nervous System 01 Ionic and Physical Basis of Membrane Potential 01 Electrotonic and Action Potential Conduction 01 Molecular mechanism of Synaptic transmission, vesicle fusion and recycling 01 Neurotransmitters and Neuro Modulators 01 Synaptic Plasticity 01 **Unit IV** Physiology of sense organs Organization of Sensory System 01 Mechanoreception and Touch 01 Vestibular Organ and Hearing 01 Chemoreception and Taste 01 Olfaction 01 Vision 01 Physiology of endocrine system Overview of endocrine glands 02 Mechanism of action of hormones 02 Neuroendocrine feedback 02 Unit V Physiology of stress Mechanism of stress 01 Stress disorders 01 01 Secondary effects

21

01

03

03

Physiology of Aging

Aging and Senescence

Theories of Aging

Physiological and Cellular Manifestations of Aging

Evolutionary Theories of Aging Programmed Theories of Aging Damage Theories of Aging Beyond Molecular Biology of Aging Molecular Mechanisms of Aging

02

Student learning outcomes

The student at the completion of the course will be able to

- understand various functional components of an organism body
- analyse the complexities and interconnectedness of these functional components
- identify the mechanism underlying maintenance of homeostasis of the body
- infer the regulatory mechanisms for maintenance of function in the body

- 1. Guyton, A.C. & Hall, J.E. (2006). Textbook of Medical Physiology. XI Edition. Hercourt Asia PTE Ltd. /W.B. Saunders Company.
- 2. Tortora, G.J. & Grabowski, S. (2006). Principles of Anatomy & Physiology. XI Edition John Wiley & sons
- 3. Christopher D. Moyes, Patricia M. Schulte 2016 Principles of Animal Physiology. 3rd Edition, Pearson Education
- 4. Hill, Richard W., et al. Animal physiology. Vol. 2. Sunderland, MA: Sinauer Associates, 2004.
- 5. Chatterjee C C (2016) Human Physiology Volume 1 & 2. 11th edition. CBS Publishers

ZOOLCC-103: Biochemistry and Cell Biology

Total Credits: 04 Teaching Ho	urs: 60
Objective: To develop an understanding of biochemical basis of life, role of sta	bilizing
interaction and biomolecular complexity and biochemical processes as the foundation	on of all
physiological events occurring in animals.	
Unit I	
Biomolecules	
Introduction to biomolecules (carbohydrates, lipids, proteins, nucleic acids)	03
Stablizing interactions (van der waals, electrostatic, hydrogen bonding, hydrophobic	0.1
interaction <i>etc.</i>) Types and structure of amino acids	01 02
Secondary structure of Proteins (α-helix, β-sheet, motifs, folds, domains,	02
Ramachandran plot)	02
Tertiary and quaternary structure	. 02
Nucleic acids: DNA structure, DNA supercoiling, forms of DNA, chromatin organiza Types of RNA	tion 02
Unit II	
Enzyme Kinetics and Bioenergetics	
EnzymesIntroduction to enzymes: Apoenzyme, holoenzyme, prosthetic group, cofactors,	
coenzymes, abzymes, ribozymes.	02
• Enzyme kinetics: Michaelis-Menten equation, LB Plots, enzyme inhibition,	
Related calculations	03
 Enzyme regulation: Allosteric regulation, covalent modification, zymogens, proenzymes, isozymes 	03
Bioenergetics	
• Thermodynamic principles: standard Free energy change, equilibrium constant, actual free energy change, Related calculations	04
Unit III	
Metabolism	
glycogenolysis,	genesis,
phosphate pentose pathway, oxidative phosphorylation, and their regulation	04
 Lipids Biosynthesis of saturated and unsaturated fatty acids Catabolism of fatty acids and ketone bodies 	04
Amino acids: Oxidation and production of urea	02
Nucleic acids: Biosynthesis and degradation of pyrimidines and purines	02
Unit IV	
Structure and function of Membrane & Cytoskeleton	
Biomembranes and architecture: lipid bilayer and protein components	02
Microfilaments: actin structures, myosin powered cell movements Intermediate filements: Organization & function	01
• Intermediate filaments: Organization & function	01

• Microtubules: Organization and dynamics, Kinesin and dynein powered movements 01

Endomembrane system and intracellular trafficking	
Compartmentalization in eukaryote cells	01
Gated transport between nucleus & cytosol	01
Structure of nuclear pore complex	01
 Signal sequences & sorting transporters 	01
 Role of monomeric GTPases in protein sorting 	01
 Protein sorting to ER and mitochondria. 	01
 Vesicular trafficking, secretary pathways, receptor mediated endocytosis 	01
Unit V	
Cellular communication	
General principles of cell communication	01
Extracellular matrix and Cell adhesion	02
Cell signaling	
 Signaling molecules and cell-surface receptors 	02
(G-protein coupled receptors, Ion-channel linked receptors, Enzyme linked receptor	rs
 Second messengers 	01
• Regulation of signaling pathways, JAK-STAT pathway, MAP Kinase pathway	02
Cell cycle and Cell division	
Cell cycle overview and control	01
Checkpoints in cell-cycle regulation	01
Regulation of Mitosis and Mieosis	01
Cancer and apoptosis	01

Student learning outcomes

The course will lay down the foundation of biochemistry among students where they will develop a deep understanding of structure of biomolecules like proteins, lipids and carbohydrates and how simple molecules together form complex macromolecules. They will be able to understand the thermodynamics of enzyme catalyzed reactions and mechanisms of energy production at cellular and molecular levels. In addition, the application of Biochemistry in understanding disease and medicine will be apprised.

1.	Nelson & Cox	Lehninger's Principles of	McMillan 2000
		Biochemistry	
2.	Zubay et al	Principles of Biochemistry	WCB 1995
3.	Voet & Voet	Biochemistry Vols 1 & 2	Wiley 2004
4.	Murray et al	Harper's Illustrated Biochemistry	McGraw Hill 2003
5.	Wilson and	Practical Biochemistry -	Cambridge
	Walker	Principles and Techniques	University Press
6.	Elliott and	Biochemistry and Molecular	Oxford University
	Elliott	Biology	press

ZOOLVC-101: Value Added Credited Course

Semester	Course	Value Added Credited Course	Non Credit Value Added Courses	Credits	Total Lectures
I	ZOOLVC-101	Biodiversity and	-	4	60
		conservation			

ZOOLVC-101: Biodiversity and Conservation

Total Credits: 04 Course Objectives	Teaching Hours: 60
 To gain knowledge of biodiversity, its threats and conservat 	ion
 To provide skills for identifying common biodiversity in the 	
 To provide knowledge about government bodies &policies in 	•
Unit I	
Biodiversity	
What is Biodiversity	02
Biodiversity Types: (a) Species, Ecosystem level, Genetic L	evel 02
(b) Alpha, Beta, Gamma level	
Indian Biodiversity & Its Distribution	02
Importance/Significance	02
Biodiversity Hotspots/Parks	02
Keystone species, Indicator Species	02
Unit II	
Classification and Diversity	
General Classification & Diversity of Lepidopterans and Ar	achnids 06
with common examples	
General Classification & Diversity of Amphibians	06
Unit III	
Tools/Techniques	
Binoculars	02
Cameras- Digital & DSLR	02
GPS, Sound Recorder, Some Common Wildlife Soft	wares 04
Methods of Census & Biodiversity, Census Technique	ue 02
Biodiversity indices	02
Unit 4	
Threats	
Major Threats to Biodiversity	02
Natural Threats: Climate Change, Natural Calamity, Deserti	fication 04
Anthropogenic Threats: Pollution, Habitat Fragmentation D	egradation, 06
Hunting/Killing/Poaching, Agricultural Practices, Urbanizat	ion
Unit 5	
Conservation Strategies	
Wild Life Protection 1972, Biodiversity Act 2000, IUCN (Categories, Red Data List
Biodiversity Conservation	02
Govt. Agencies- IWB, MoEF, WII etc., NGO'S – BNHS, A	
Ex situ, In situ Conservation	02
Tribes and Tradition Societies in Conservator – BISHNOI'S	
Andolans: - Chipko Movement, Panipanchayat, etc.	02

Student learning outcomes

The student at the end of the course will be able to

- Appreciate biodiversity, its threats and conservation.
- Identify common biodiversity in their courtyard.
- Comprehend and communicate details of various Government Bodies & Policies related to biodiversity.

- 1. Biodiversity and Ecosystem functioning. edited by Michel Lorean ,ShahidNaureen and Pablo Inchausti (Oxford University Press.)
- 2. Biodiversity and Conservation in Forests. By Diana. F. Tomback. Publication MDPI-Multidisciplinary Digital Publishing Institute.
- 3. Methods and Practice in Biodiversity Conservation by David Hawks-worber. (Springer Publication)
- 4. Recent Studies in Biodiversity and Traditional Knowledge in India. By Chandra Ghosh and A.P. Das (Publisher: Levant Books)
- 5. Biodiversity and Protected Areas by Beazley, Karen, Baldwin, Robert. (Publishers: MDPI)
- 6. An Advanced Text book on Biodiversity (Principle and Practice) by K.V. Krishnamurthy. (Publication-CBS)
- 7. Biodiversity Hotspots edited by Vittore Rescigrio and Savario Moletta. (Publishers: Nova Science Publishers)

Semester II

ZOOLCC-201: Chordata

Total Credits: 04	Teaching Hours: 60
Course objectives	
To create in the student an appreciation of chordate	e diversity
• To develop in the student an understanding of struc	ctural and functional diversity
 To develop in the student the understanding of evolutionary relationship chordates 	
Unit I	
Protochordates and Pisces	
General organization and affinities of Hemichorda	
General organization and affinities of Urochordata	
General organization and affinities and Cephaloche	
General organization of fishes	03
General organization and affinities of Ostra	
General organization and affinities of Dipn	-
General organization and affinities of Coels	acanthiformes 01
Unit II	
Amphibia	
Origin of tetrapods	03
General organization of Anura	02
Neoteny	01
Peculiarities of Urodela	01
Peculiarities and affinities of Apoda	02
Adaptive Radiation	01
Extinct Amphibians	01
Unit III	
Reptilia	
Origin and evolution	02
Adaptive radiation	02
Dinosaurs	02
General organization and affinities of Chelonia	02
Crocodilia	0 2
Squamata	02
Rhynchocephalia	02
Unit IV	
Aves	
Origin and evolution	03
Flightless birds	0 2
Adaptations for flight	03
A dantive radiation	0.2

Unit V

Mammalia

Origin of mammals	03
Adaptive radiation of Mammalia	02
Structural peculiarities and phylogenetic relations of <i>Prototheria</i> and <i>Metatheria</i>	02
Dentition	02
Stomach	01
Uterus modifications	01
Aquatic mammals	02

Student learning outcomes

The student at the completion of the course will be able to:

- demonstrate comprehensive identification abilities of chordate diversity
- explain structural and functional diversity of chordate
- explain evolutionary relationship amongst chordate

- 1. Harvey et al: The Vertebrate Life (2006)
- 2. Colbert et al: Colbert's Evolution of the Vertebrates: A history of the backboned animals through time (5th ed 2002, Wiley Liss)
- 3. Hildebrand: Analysis of Vertebrate Structure (4th ed 1995, John Wiley)
- 4. Kenneth V. Kardong (2015) Vertebrates: Comparative Anatomy, Function, Evolution McGraw Hill
- 5. McFarland et al: Vertebrate Life(1979, Macmillan Publishing)
- 6. Parker and Haswell: TextBook of Zoology, Vol. II (1978, ELBS)
- 7. Romer and Parsons: The Vertebrate Body (6th ed 1986, CBS Publishing Japan)
- 8. Young: The life of vertebrates (3rd ed 2006, ELBS/Oxford)
- 9. Neilsen (2012). Animal Evolution: Interrelationships amongst living Phyla. Oxford

ZOOLCC-202: Developmental Biology and Immunology

Total Credits: 04 Teaching Hours: 60 Course objectives The objective of this course is to provide insight on: how the single cell formed at fertilisation forms an embryo and then a fully formed adult organism. • integration of genetics, molecular biology, biochemistry, cell biology, anatomy and physiology during embryonic development, and • the treatment of birth defects and infertility in humans. • To develop basic understanding about Immunity, its organization and their mechanisms. • To understand in detail the basic immune mechanism related to different Immunological diseases & disorders. • To create and develop the ideology about different vaccines, immune treatment mechanisms, cancer immunotherapy and latest experimental immune system. Unit I Gamete fertilization and early development 02 Structure and recognition of the gametes Sperm capacitation and acrosomal reaction 02 Gamete binding and fusion, and the prevention of polyspermy 02 02 Cleavage patterns Gastrulation 02 Neurulation 02 Unit II Comparative account of underlying mechanisms in vertebrate development Morphogenesis and cell adhesion 02 Evidence for genomic equivalence 02 Differential gene expression 02 Cell-cell communication in development 02 Primary organizers, induction and competence 02 Early development of fish, birds, and mammals 02 **Unit III** Later developmental processes The dynamics of organ development 03 Development of eye Development of kidney Development of limb

03

Metamorphosis: the hormonal reactivation of development

Amphibian metamorphosis Metamorphosis in insects

Epimorphic regeneration of salamander Limbs	
Compensatory regeneration in the mammalian Liver	
Morphallactic regeneration in hydras	
Aging: the biology of senescence	03
Unit IV	
Immune system & responses	
Types of Immunity (Innate, Adaptive, humoral, cell-mediated)	02
Cells of Immune system (B & T lymphocytes, Phagocytes, Granulocytic cells,	Mast
cells, NK Cells, Dendritic cells)	02
Organs of Immune system- (Primary and secondary lymphoid organs-Thy	mus,
marrow, Bone lymph nodes, spleen, MAST)	02
Generation of B &T cell responses	06
Immunoglobulins (structure, Types/Classes & functions)	
Epitopes	
Maturation, differentiation and activation of BCR and TCR	
Monoclonal and polyclonal antibodies	
Antibody diversity	
Organization & Expression of Immunoglobulin genes	

03

Unit V

Immune mechanisms

Regeneration

Antigen antibody interactions (Agglutinaton Rn's, Precipitation Rns', cross reactivity, Antibody affinity and avidity, immune florescence, flow cytometry, western blotting, immune electron microscopy, RIA, ELISA and it's types)

O3
Antigen: types, processing & presentation

Major Histocompatibility complex: classes, structure, expression, immune responsiveness, and disease susceptibility (HLA)

Complement system—classical, alternative, lectin pathways

O2
Vaccine

O3

O2

Student learning outcomes

The student at the completion of the course will be able to understand:

- a variety of interacting processes, which generate an organism's heterogeneous shapes, size, and structural features,
- how a cell behaves in response to an autonomous determinant or an external signal, and
- the scientific reasoning exhibited in experimental life science.
- an in depth understanding about Immune System & it's elaborate mechanisms.
- state of art information about recent trends in Immune therapy in case of several diseases like cancer, hepatitis etc

- 1. Developmental Biology: T. Subramaniam, (Reprint) 2013, Narosa Publishing House Pvt. Ltd., New Delhi
- 2. Essential Developmental Biology: Jonathan M. W. Slack, (3rd ed.) 2012, Wiley-Blackwell.
- 3. Developmental Biology: From a Cell to an Organism (Genetics & Evolution) eBook: Russ Hodge, 2009, Infobase Publishing.
- 4. Current Topics in Developmental Biology: Roger A. Pedersen, Gerald P. Schatten, 1998 Elsevier.
- 5. Developmental biology: Werner A. Müller, 2012, Springer Science & Business Media.
- 6. Human Embryology and Developmental Biology E-Book: Bruce M. Carlson, 2018, Elsevier Health Sciences.
- 7. Developmental Biology: Michael J. F. Barresi, Scott F. Gilbert, 2019, Oxford University Press.
- 8. Thomas J. Kindt, Richard A. Goldsby, Barbara A. Osborne, Janis Kuby (2007) Kuby Immunology. W H Freeman
- 9. Delves Peter J., Martin Seamus J., Burton Dennis R., Roitt Ivan M. (2017). Roitt's Essential Immunology, 13th Edition. Wiley Blackwell
- 10. Immunology by Ian. R. Tizard Saunders college Publishing Chicago, New York.
- 11. Nandini Shetty (2005) Immunology Introductory Textbook. New Age International.

ZOOLCC-203: Quantitative Biology and Bioinstrumentation

Total Credit: 04	Teaching Hours: 60	
Course objectives		
 To describe the basics and application of Biostatistics. 		
• To explain the principle and working of instruments in a biology	laboratory.	
Unit I		
Biological data		
Data on a ratio scale	02	
Data on an interval scale	02	
Data on an ordinal scale	02	
Data on a nominal scale	02	
Types of statistics: inferential and descriptive	02	
Parametric and non-parametric tests (concepts and applications)	02	
Unit II		
Measures of central tendency (individual observations, discrete and con		
Mean (simple and weighted)	02	
Median	02	
Mode (analysis using group table)	02	
Measures of dispersion (individual observations, discrete and continuous	is series)	
Range and mean deviation	02	
Standard deviation	02	
Kurtosis and skewness	02	
Unit III		
Correlation and regression		
Types and methods of studying correlation	02	
Karl Pearson's coefficient of correlation and determination	02	
Regression equation (X on Y and Y on X)	02	
Regression lines	01	
Tests of significance and their application		
t-test	02	
Chi-square test	01	
Analysis of variance		
One-way and two-way ANOVA	02	
Unit IV		
Bioinstruments		
Basic principles of microscopy	01	

Phase contrast microscope	01
Electron microscope	02
Fluorescence microscope	02
Confocal microscopes	02
Centrifuge: principle, types of rotors, high speed and ultracentrifuge	02
pH Meter, Chromatography: Paper, Gel Filtration, Ion exchange, HPLC	02

Unit V

Advanced instrumentation

Colorimetry and spectrophotometry: Beer-lambert law, absorption coefficient	02
Biochemical Analysers, Lyophilizer	02
Water purification system, Laminar flow, Autoclave	02
PCR machine, Gel Documentation System, Gel Apparatus	03
Flow cytometer, DNA sequencer, Microarray, Microplate reader	03

Student learning outcomes

The present course will enable the students to:

- solve the biological problems during data analysis using various statistical methods such as uni-variate analysis, bi variate analysis, correlation, regression and various tests of significance.
- learn the working of various equipments which will be useful in the final semester for their experimental work.

Suggested readings

Biostatistical Analysis (Fourth Edition) by Jerrold H. Zarr, Pearson Education Inc., Delhi. Statistical Methods (Eighth Edition) by G. W. Snecdecor and W. G. Cochran, Willey Blackwell Biostatistics (Tenth Edition) by W.W. Daniel and C. L. Cross, Wiley Introductory Biological Statistics (Fourth Edition) by John E. Havel, Raymond E. Hampton and Scott J. Meiners

1.	Sambrooket al	Molecular Cloning vols I, II,	CSHL	2001
		III		
2.	Primrose	Molecular Biotechnology	Panima	2001
3.	Clark & Switzer	Experimental Biochemistry	Freeman	2000
4.	Westhead et al	Bioinformatics: Instant Notes	Viva Books	2003

ZOOLCC-204: Animal Behaviour and Chronobiology

Credits: 04 **Teaching Hours: 60 Course objectives** The course is so designed that students will learn: animal behaviour in the context of evolutionary and ecological biology, • historical background and theory for animal behaviour concepts, • recent approaches in animal behaviour, • techniques used to study animal behaviour in a variety of different organisms and identify potential research questions from discussions of current literature, • how the rhythmic geophysical environment impacts the internal rhythms, • how environmental cues are perceived by the organisms and modulate the circadian physiology at molecular, cellular and systems levels, • diagnosis of clock disruption and related disorders, and • time dependent treatment to different lifestyle disorders. Unit I Behavioural evolution and regulation History of behavioural studies 01 Regulation of behaviour 02 Proximate and ultimate causes of behavioural evolution 01 **Learning and memory** Types of learning (non–associative and associative) 01 Social learning (cultural transmission) 01 Survival value of learning Molecular basis of learning 01 Molecular basis of memory Communication 02 Communication modes Evolution of communication Deceit versus honest signalling 02 Game theory and communication Adaptive value of communication **Sexual selection** Intra and intersexual selection 02 Pre-and post-copulatory sexual selection

01

Sperm competition Cryptic female choice

Evolutionary models of mate choice

Unit II	
Reproductive strategies	
Different mating systems	01
Ecology and evolution of mating systems	02
Neuroendocrine control of mating systems	
Parental care	
Parental investment	01
Origin and evolution of parental care	
Patterns of parental care	02
Parent-offspring conflict	
Sibling conflict	
Brood parasitism	
Territorial behaviour	
Aggression, dominance and territorial behaviour	01
Habitat choice	
Ideal free and despotic distribution	
Types of territories	
Economic defendability	02
Territory size determinants and defense measure	
Evolution of territoriality	
Adaptive value of territoriality	
Social behaviour and kin selection	
Levels of cooperation	02
Paths to cooperation (reciprocity, byproduct, mutualism, group selection)	
Types of social structure	
Adaptive value and evolution of sociality	01
Social symbioses	
Hamilton's rule for kin selection	01
Evolution of kin selection	
Unit III	
Clock, rhythms and calendar	
Introduction, milestones and scope of chronobiology	03
Geophysical environment seasons	01
Proximate and ultimate factors	
Biological clocks, types, constant conditions, model systems	03
Entrainment theory: masking, synchronization	02
Photoreception, phototransduction	03
Photoperiodic time measurement	

Unit IV

Clock, underlying events and misalignments

Anatomy and physiology of the time keeping system	03
Cellular and Molecular basis of circadian timekeeping in Drosophila	
and mammals	03
Seasonal migration	01
Sleep and neural relation	02
Clock misalignment; jet lag, shift work,	01
Lifestyle disorders: depression and sleep disorders, social jetlag	01
Clock repair, chronotherapy and chronomedicine	01

Unit V

Study and analysis of animal behavior

Evolution by natural selection	01
Genetics and inheritance	01
Comparative method	01
Tinbergen's four questions (proximate and ultimate causes)	02
Observational	
Experimental	
Comparative	

Study and analysis of Chronobiology

Activity and rest calculations	01
Phase shift	01
Phase response curves (PRC) and Phase transition curves (PTC)	01
Questionnaires (sleep logs, chronotype, fatigue, RNAS)	02
Monitoring of physiological variables (temperatures, blood pressure,	01
heart rate)	

Student learning outcomes

After successful completion of this course in animal behaviour and chronobiology the students should be capable of:

- Understanding and identify behaviours in a variety of taxa
- discussing the proximate and ultimate causes of various behaviours
- designing and implementing experiments to test hypotheses relating to animal behaviour
- understanding about the molecules, cells, and systems of biological timing systems
- conceptualizing how species profitably inhabit in the temporal environment and space out their activities at different times of the day and seasons.
- studying and analysing the scientific literature
- planning studies on biological rhythms in both human and non-human species
- interpreting the cause and effect of lifestyle disorders
- contributing to public understanding of biological timing

- 1. Alcock, J. 2013. Animal Behavior: An Evolutionary Approach. Tenth Edition. ISBN-13: 978-0878939664 2)
- 2. Sherman, P.W. and J. Alcock. 2013. Exploring Animal Behavior: Readings from American Scientist. Sixth Edition. ISBN-13: 978-1605351957
- 3. Dugatkin, L. A. (2013). Principles of animal behavior: Third international student edition. WW Norton & Company.
- 4. Breed, M. D., & Moore, J. (2015). Animal behavior. Academic Press.
- 5. Mellgren, R. L. (Ed.). (2000). Animal cognition and behavior (Vol. 13). Elsevier.
- 6. Bolhuis, J. J., Giraldeau, L. A. E. (2005). The behavior of animals: Mechanisms, function, and evolution. Blackwell Publishing.
- 7. Hazlett, B. (Ed.). (2012). Quantitative methods in the study of animal behavior. Elsevier.
- 8. Chronobiology Biological Timekeeping: Jay. C. Dunlap, Jennifer. J. Loros, Patricia J.
- 9. DeCoursey (ed). 2004, Sinauer Associates, Inc. Publishers, Sunderland, MA, USA
- 10. The Physiological Clock (3rd edition), Erwin Bunning, The English Universities Press Ltd. London, Springer- Verlag New York, Berlin Heidelberg
- 11. Circadian Physiology: Roberto Refinetti, CRC Press (3rded) 2016
- 12. Introducing Biological Rhythms: Willard L. Koukkari, Robert B. Sothern, 2006, Springer
- 13. Biological Timekeeping: Clock, Rhythms and Behaviour, Vinod Kumar (ed. 2017) Springer India Pvt Limited.
- 14. Insect Photoperiodism: Stanley D. Beck, Academic Press, New York and London
- 15. Chapter 1, The Clocks that Time Us, Moore-Ede, MC, Sulzman, FM and Fuller, CA (1982) Harvard University Press, Cambridge.
- 16. C. S. Pittendrigh, S. Daan (1976c) A functional analysis of circadian pacemakers in nocturnal rodents. V. Pacemaker structure: a clock for all seasons. J. Comp. Physiol. [A]106:333-355.
- 17. M. Menaker (1968) Extraretinal light perception in the sparrow. I. Entrainment of the biological clock. *Proc. Natl. Acad. Sci.* 59:414-421.
- 18. J.C. Dunlap (1999) Molecular bases for circadian clocks. Cell 96:271-290.

ZOOLVNC-201: Value added non credited course

Semester	Course	Credit Value Added Courses	Non Credit Value Added Courses	Credits	Total Lectures
II	ZOOLVNC-201	-	Physiology of Stress and Yoga	-	60

ZOOLVNC-201: Physiology of Stress and Yoga

Non Credit Course	Teaching Hours: 60
 Unit I: Homeostasis and Its Disruption Homeostasis: the maintenance of steady state Environmental disruptors of homeostasis Lifestyle disruptors of homeostasis 	12
 Unit II: Consequences of Homeostasis Disruption General Adaptation Syndrome (GAS) Mechanism of stress Stress disorders Secondary effects 	12
 Unit III: Yoga: Stress Buster Mechanisms I Pranayama Nadishuddhi Ujjayi Sitali/ Sitkari and Brahamari 	12
 Unit IV: Yoga: Stress Buster Mechanisms II Meditation Breath Awareness Om chanting and meditation Yoga Nidra Kundalini Jagriti 	12
Unit V: Yoga: Stress Buster Mechanisms III (Asanas)	12
• Shavasana	

Semester III

ZOOLCC-301: Biosystematics, Evolutionary Biology and Biodiversity

Total Credit: 04	Teaching Hours: 60
Course objectives	
 To provide the basic concepts, importance, status and interaction and environment 	1 between organisms
Unit I	
Taxonomy and classification	
Concepts, terminology and types of taxonomy and classification	04
Principles of classification	04
Artificial and natural classification	04
Unit II	
Concept and preambles of ICZN	04
Law of priority	04
Proteins and nucleic acids in modern taxonomy	04
Unit III	
Concept and type of species	03
Endemic species	03
Mechanisms of speciation	03
Origin of life: Life's beginnings, evolution of eukaryotes	03
Unit IV	
Evolutionary theories	03
Natural selection	02
Molecular evolution	03
Adaptation (evolutionary analysis of form and function)	02
Phylogenetics: concept, phylogenetic gradualism and punctutated	equilibrium 02
Unit V	
Biodiversity: concepts and hierarchical levels	02
Species diversity	02
Species richness and evenness	02
Genetic diversity	02
Ecosystem diversity and services	02
National laws of biodiversity	02

Student leaning outcome

The student at the completion of the course will be able to understand:

- basic concepts of biosystematics, evolutionary biology and biodiversity which will enable the students not only to understand the subjects but also to solve the biological problems related to the environment, and
- principles of taxonomy for identification, classification and naming the organisms scientifically.
- origin and modification of various life forms during various time scales.

- 1. Principles of Systematic Zoology by Ernst Mayr, McGraw Hill, New York
- 2. Principles of Animal Taxonomy by G.G.Simpson, Columbia University Press, Scientific Publisher.
- 3. Evolution: An Introduction by S.C.Stearns and R.F.Hoekstra, Oxford University Press, New York
- 4. Evolution by N. H. Barton, D.E.G. Briggs, J.A. Eisen, D. B. Goldstein and N.H. Patel, Cold Spring Harbor Laboratory Press, New York.
- 5. Ridley, M (2004) Evolution III Edition Blackwell publishing Hall, B.K. and Hallgrimson, B (2008). Evolution IV Edition. Jones and Barlett
- 6. What is biodiversity by James Maclaurin and Kim Sterelny, U.Chicago.Edu.
- 7. Schuh, R.T., and A.V.Z. Brower. 2009. Biological Systematics: Principles and Applications, 2nd Ed. Cornell University Press. 311+xi pp.
- 8. Wiley, E. O. and B. S. Lieberman. 2011. Phylogenetics: Theory and Practice of Phylogenetic Systematics, 2nd Ed. Wiley-Blackwell. 406+xvi pp.
- 9. Williams, D. M. and M. C. Ebach. 2010. Foundations of Systematics and Biodiversity. Springer. 309+xvii pp.
- 10. Biodiversity and Ecosystem Functioning by E.D. Shulze and H. A. Moonthy, Spriger Publication.
- 11. Methods and Practice in biodiversity Conservation by David Hawks worth, Springer publication
- 12. A Text Book of Biodiversity by K.V. Krishnamurthy, CBS Publication

ZOOLCC-302: Environmental Biology, Wildlife and Toxicology

Total Credits: 04	Ceaching Hours: 60
Course objectives	
 To develop in the student an understanding of environmental struct 	ture and function
 To develop in the student an understanding of global environmenta 	ıl issues
 To develop in the student an understanding of significance and co 	onservation of wild
life	
 To develop in the student an understanding of xenobiotics, their idamage caused 	mode of action and
damage caused	
Unit I	
Ecosystem Concept production and decomposition	01
Concept, production and decomposition	02
Biosphere and biomes Biogeochemical cycles	02
Population ecology	02
Community ecology and ecological succession	03
Concept of habitat ecology and ecological niche	01
Island biogeography	02
Unit II	
Global environmental problems	
Environmental pollution	04
Waste management	02
Environmental monitoring	02
Acid rain	01
Greenhouse effect and global warming	01
Depletion of ozone layer	01
Climate change	01
Unit III	
Wildlife	
Basic concept of wildlife and biodiversity	02
Causes of wildlife depletion	02
Wildlife conservation strategies	02
Wildlife management tools and techniques	02

Unit IV

Exposure of toxicants

Conservation genetics

Legislative methods of biodiversity conservation

Different routes/methods of exposure, frequency & duration of exposure

02

02

Human exposure	0 1
Dose-response relationship	0 1
Selective toxicity:	02
concept, significance	
Basic mechanisms of selective toxicity	
Toxicity Tests	
Bioassay	0 1
Acute toxicity tests for terrestrial and aquatic animals	02
Chronic toxicity tests	0 1
Concept of maximum acceptable toxicant concentration (MATC) and	
safe concentration	02
Factors affecting toxicity	
Factors related to the chemical exposure	0 1
Surrounding medium and the organisms	
Unit V	
Toxic effects of Xenobiotics	
Local and systemic effects	0 1
Immediate and delayed effects	
Reversible and irreversible effects	
Biochemical and physiological effects of xenobiotics	0 1
Nanotoxicology	01
Toxicogenomics	01
Bioaccumulation of Xenobiotics	
Concept of bioconcentration, bioaccumulation and biomagnific	cations;
Bioconcentration factor	0 1
Process of bioaccumulation in the biological system	0 1
Biotransformation of Xenobiotics	
Concept of biotransformation and metabolism	0 1
Sites of biotransformation	0 1
Biotransformation enzymes and general biotransformation reactions	01
Factors affecting biotransformation	01
Safety evaluation of xenobiotics	0.1
Antidotal therapy	01

Student learning outcomes

The student at the completion of the course will be able to explain:

- complexities and interconnectedness of various environmental levels and their functioning
- global environmental issues, their causes, consequences and amelioration

- significance and conservation of wild life
- xenobiotics, their mode of action and damage caused

- 1. Ecology: Theories & Applications. Peter D. Stiling, 2001, Prentice Hall.
- 2. Ecological Modeling. 2008. Grant, W.E. and Swannack, T.M., Blackwell.
- 3. Ecology: The Experimental Analysis of Distribution and Abundance. Charles J. Krebs, 2016, Pearson Education Inc.
- 4. Elements of Ecology. T.M. Smith and R.L. Smith, 2014, Pearson Education Inc.
- 5. Environmental Chemistry. 2010. Stanley and Manahan, E. CRC, Taylor & Francis. London.
- 6. Environment. Raven, Berg, Johnson, 1993, Saunders College Publishing.
- 7. Essentials of Ecology. G.T. Miller, Jr. & Scott. E. Spoolman, 2014, Brooks/Cole, Cengage Learning.
- 8. Freshwater Ecology: A Scientific Introduction. 2004. Closs, G., Downes, B. and Boulton, A. Wiley-Blackwell publisher, Oxford.
- 9. Fundamental Processes in Ecology: An Earth system Approach. 2007. Wilkinson, D.M. Oxford University Press, UK.
- 10. Fundamentals of Ecology. E.P. Odum& Gray. W. Barrett, 1971, Saunders.
- 11. Principles of Terrestrial Ecosystem Ecology. 2011. Chaplin, F.S., Matson, P.A. & Vitousek, P.M. Springer.
- 12. Omkar and Pervez, A.(2017). Concepts of Toxicology. A Textbook for U.G. and P.G. students. Publ. by Vishal Publishing Co. Jalandhar.
- 13. Derelanko & Auletta. Handbook of Toxicology, 3rd Ed. CRC Press
- 14. Casarett & Doull's Toxicology: The Science of Poisons" 8th Ed. Edited by Curtis A. Klaassen & John B. Watkins III
- 15. Principles of Biochemical Toxicology" by J.A. Timbrell, 4th Ed. Informa Press
- 16. Mechanistic Toxicology", U.A.Boelsterli, 2nd Ed. CRC Press.
- 17. Caughley, G., and Sinclair, A.R.E. (1994). Wildlife Ecology and Management. Blackwell Science.
- 18. Pushpesh. J. Wildlife & Forest Conservation A Status Report. Swastik
- 19. Anderson Stanley. Managing Our Wildlife Resources. Prentice Hall, 3rd Edition
- 20. Martin Winter. Wildlife Biology. Syrawood Publishing House
- 21. Kasen Hurst. Wildlife Conservation & Management. Larsen & Keller
- 22. Martin Winter. Wildlife Conservation & Management . Syrawood Publishing House
- 23. Martin Winter. Wildlife Protection & Management. Callisto Reference
- 24. Kendall W.L. Wildlife Study Design . SJ
- 25. Andrew Wright. Forest Ecology. Black Prints
- 26. Rajesh Gopal. Fundamental of Wildlife Management. Natraj Publishers
- 27. Biodiversity and Ecosystem functioning. edited by Michel Lorean ,ShahidNaureen and Pablo Inchausti (Oxford University Press.)
- 28. Biodiversity and Conservation in Forests. By Diana. F. Tomback. Publication MDPI-Multidisciplinary Digital Publishing Institute.

- 29. Methods and Practice in Biodiversity Conservation by David Hawks-worber. (Springer Publication)
- 30. Recent Studies in Biodiversity and Traditional Knowledge in India. By Chandra Ghosh and A.P. Das (Publisher: Levant Books)
- 31. Biodiversity and Protected Areas by Beazley, Karen, Baldwin, Robert. (Publishers: MDPI) An Advanced Text book on Biodiversity (Principle and Practice) by K.V. Krishnamurthy. (Publication-CBS)
- 32. Biodiversity Hotspots edited by Vittore Rescigrio and SavarioMoletta. (Publishers: Nova Science Publishers)

ZOOLEL-301A: Principles of Endocrinology

Theory Credit: 04	Teaching Hours: 60
Course objectives	
The course focuses on helping the students to understand the basics of	of endocrinology and
impart knowledge about the endocrine regulation of different body function	tions. Besides, it aims
to understand the integrative working of signaling system in maintaining	ng homeostasis
Unit I	
Fundamentals of Endocrinology	
Introduction and evolutionary perspective	03
Endocrine hypothalamus, structure and function	04
SON, PVN, POA, Arcuate nucleus	
Hypophysiotropic hormones	
Pituitary gland, structure and function	05
(adenohypophysis, Neurohypophysis, pars intermedia)	
Unit II	
Hormones and metabolic regulation	
Thyroid gland	06
Biosynthesis and chemistry of thyroid hormones	
Mechanism of action	
Biological actions	
Endocrine Pancreas	03
Insulin, glucagon and other secretions	
Chemical regulation of feeding, digestion	03
Unit III	
Endocrine regulatory molecules	
Hormones	07
Chemical classification of hormones	
Hormone receptors	
Mechanism of hormone action	
Neurotransmitters and neuropeptides	03
Regulatory pathways	02
Unit IV	
Neuroendocrine integration	
Hypothalamo-hypophyseal axis	03
Feedback mechanisms	02
Adrenal gland, cellular organization	04
Catecholamines and General Adaptation Syndrome	03

Unit V

Endocrine regulation of homeostasis

Hormones and Homeostasis 06

Electrolytes and water balance (Renin-Angiotensin system)

Energy homeostasis

Parathyroid gland 06

Calcium homeostasis

Endocrine regulation of bone

Student learning outcome

The course will enable the students:

- To develop an understanding of the basic endocrinology
- To study the endocrine regulatory molecules mediating physiology and behavior
- To study the neural and endocrine components of physiological function and neuroendocrine regulation
- To understand the role of hormones in metabolic regulation and maintaining homeostasis
- To understand the integrative working of signaling system

- 1. Vertebrate Endocrinology: David O. Norris, James A. Carr, 2013, 5th Edition, Academic Press
- 2. Williams Textbook of Endocrinology: H. M. Kronenberg, S. Melmed, K. S. Polonsky and
- P. R. Larsen, 2008, 11th Edition, Saunders, Elsevier
- 3. Comparative Vertrebrate Endocrinology: P. J. Bentley, 3rd Edition, Cambridge University Press
- 4. Neuroendocrinology: Charles B. Nemeroff, CRC, US
- 5. An Introduction to Neuroendocrinology: Richard E. Brown, 2005, Cambridge University Press
- 6. Endocrinology: Mac E. Hadley, Jon E. Levine, 2009, 6th Edition, Pearson Education
- 7. Molecular Endocrinology: F. F. Bolander, 3rd Edition, 2004, Elsevier Academic Press
- 8. Essential Endocrinology: Darville Brook, C.G. & Marshall, Wiley Blackwell
- 9 Endocrinology at a Glance: Greenstein B, Wiley Blackwell
- 10. Evidence-Based Endocrinology: V. M. Montori (ed.), Humama Press
- 11. General And Comparative Endocrinology: John B. Allard, Cunming Duan, Intelliz Press LLC (2016)

ZOOLEL-301B: Insect Taxonomy, Morphology and Ecology

Teaching Hours: 60

Theory Credit: 04

Course objectives

 To acquaint students with taxonomical and biological diversity of insects 	
 To acquaint students with biology and evolutionary history of the hexapod orders. 	
To acquaint the students with general external morphology of insects	
 To acquaint students with the role that insects play in the ecosystems and to study 	how
the ecosystems influence the insects that live in them	
Unit I	
Insect taxonomy I	
Overview of insect classification	04
Identification of Entognathushexapodes	06
Protura	
Collembola	
Diplura	
Identification of apterygotes	02
Thysanura	
Unit II	
Insect taxonomy II	
Identification of pterygote orders and their economically important superfamilies	04
Orthoptera	
Hemiptera	
Identification of orders and their economically important superfamilies	04
Coleoptera	
Hymenoptera	
Identification of order and their economically important superfamilies	04
Lepidoptera	
Diptera	
Unit III	
Insect morphology	
General organization of the insect body	02
General Organization of insect head	04
Sutures and area of the cranium	
Tentorium	
Gnathal appendages (antenna and mouth parts)	
General Organization of insect thorax	04
Pterothorax	
Legs and their modification	
Wing types	
Wing venation	

General organization of insect abdomen	02
Unit IV	
Insect ecological techniques I	
Survey and sampling methods	03
Reproductive potential	02
Population growth and dynamics	03
Survivorship curves and life tables and their application to insect biology	04
Unit V	
Insect ecological techniques II	
Interspecific interactions	02
Prey-predator interactions	02
Functional and numerical response	01
Concept of predator satiation	01
Evolution of life history strategies	03
Insect–plant interactions	03

Student learning outcomes

Upon successfully completing this course students will be able to;

- demonstrate identification skills for all insect orders and some superfamilies
- demonstrate an understanding of the evolutionary history of hexapod orders
- explain and identify the external morphology of insects
- demonstrate understanding of the interactions between the insects and ecosystem.

Suggested references

- 1. Richards, O. W., & Davies, R. G. (1997). Imms' General Textbook of Entomology, Volume I: Structure, Physiology and Development. London, Chapman and Hall.
- 2. Imms, A. D., Richards, O. W., & Davies, R. G. (Eds.). (2012). Imms' General Textbook of Entomology: Volume 2: Classification and Biology. Springer Science & Business Media.
- 3. B. Danforth & C. Marshall. 2003. Eickworth's Manual of Insect Morphology. (Posted PDF files on Carmen.osu.edu.
- 4. Snodgrass, R.E. 1993 (originally 1935). Principles of Insect Morphology (with new forward by George Eickwort). Cornell University Press. 667pp.
- 5. Grimaldi, D.A. and M.S. Engel. 2005. Evolution of the Insects. Cambridge University Press. 755 pp.
- 6. Triplehorn, C.A. and N.F. Johnson. 2005. Borror and DeLong's Introduction to the Study of Insects, 7th edition. Thomson Brooks/Cole, Belmont, CA.
- 7. Schowalter, T.D. (2016). Insect Ecology: An Ecosystem Approach. Academic Press.
- 8. Price, P.W., Denno, R.F., Eubanks, M.D., Finke, D.L., and Kaplan, I. (2012). Insect Ecology: Behavior, Populations, and Communities. Cambridge University Press.

ZOOLEL-301C: Fish Biology and Genetic Resources

Total Credit: 04	Teaching Hours: 60
Course objectives	
The aim is to provide students with the knowledge of:	
biology and physiology of fishes	
 fish genetics resources and its use for fish productivity 	
Unit I	
Fish morphology and anatomy	
Skin: structure, composition and function	01
Barbels in fishes	01
Scales: Types, structure and composition	02
Tail: structural modifications	01
Fins and locomotion	02
Air breathing organs and swim bladder: (structural modifications	3) 03
Weberian ossicles and sound producing organs	02
Unit II	
Fish physiology	
Food, feeding habits and digestion	03
Excretion	01
Osmoregulation	01
Respiratory system: gills, physiology of respiration	02
Circulatory system	02
Nervous system	01
Sense organs: eyes, olfactory and gustatory	02
Unit III	
Reproduction and development	
Gonads: male and female	02
Reproductive cycle and maturation	03
Spawning	01
Development in fishes	02
Parental care	02
Selective breeding and hybridization	02
Unit IV	
Endocrinology and behaviour	
Endocrine glands: structure and functions	03
Fish behviour (conditioned response and ethological analogies)	02
Fish migration	02
Pigments, colour changes and its significance	02
Electric organ	01

Luminescence organs in different fishes	02
Unit V	
Fish genetic resources	
Fish Biodiversity	02
Stock (concept and structuring)	03
Fish chromosome and karyotyping	03
Chromosome Banding (C, G and NOR)	02

02

Student learning outcomes

The present course provides the basic concepts of fish biology and genetic resources, which will enable the students to:

Chromosome Manipulation (Gynogenesis, Androgenesis and Polyploidy)

- utilize the knowledge in fish biology researches,
- manage the fish under controlled conditions, and
- understand the status of fish biogenetic resources of India

- 1. Lagler KF, Bardach, JE, Miller, RR, Passino DRM. 1977. Freshwater Fishery Biology by Ichthyology, 2nd Ed. John Wiley & Sons, New York
- 2. Santosh Kumar and Manju Tembhre. 2011. Fish and Fisheries.
- 3. Moyle PB. 1982. Fishes: An introduction to ichthyology. Printice-Hall, Englewood cliffs. Jayaram KC. 2008. Fundamentals of Fish Taxonomy.
- 4. Gopal Ji Srivastava. 1995. Fishes of U.P. and Bihar.
- 5. Paul J.B. Hart and John D. Reynolds. 1979. Handbook of Fish Biology and Fisheries.
- 6. Brown ME. 1966. Physiology of fishes. Vol. I and II Academic Press. New York.
- 7. Hoar WS, Randall DJ and Donaldson EM. 1983. Fish Physiology. Vol. IX. Academic Press, New York

ZOOLEL-301D: General Parasitology

Credits: 04 Teaching Hours:	60
Course objectives	
This course will acquaint the students with:	
 adequate knowledge on parasites and parasitism with an emphasis on the physiolo biochemistry, ecology and evolution of parasites, and 	gy,
• an understanding of the molecular taxonomy of parasites, and the interface parasitism/immunity in the context of the host-parasite interactions.	of
Unit 1	
Introduction to Parasitology	12
General introduction; basic definitions and concepts; career in parasitology Animal associations (phoresy, symbiosis, mutualism, symbiosis, parasitism) Types of hosts and parasites; Host specificity; Parasitic adaptation Parasitology and human welfare	
Unit 2	2
Taxonomy and diversity	
Basic definitions and concepts of taxonomy and systematics	
Morphological taxonomic characters of major parasite groups	
Kinds of taxonomic literature and databases and their uses	
Process of typification and different zoological types	
International code of Zoological Nomenclature (ICZN)	
Biodiversity of parasites at global and national level	
Unit 3	
Physiology and biochemistry	12
Ultrastructure of the tegument	
Physiology of digestion, excretion and respiration	
Metabolism of protein, lipid and carbohydrate	
Physiology of reproduction and egg-shell formation	
Unit 4	
Ecology, evolution and immunology of parasites	12
Mechanism of infection	
Dimensions and saturation of niches of parasites	
Parasite manipulation of host behaviour	
Host-parasite coevolution	
Host–parasite interactions (tissue damage, tissue changes, immunological adaptation of parasitism)	ons

Unit 5

Molecular biology and bioinformatics

Extraction, preservation, and amplification of DNA

Quantitative and qualitative analysis of nucleic acid (spectrophotometry and gel electrophoresis)

12

DNA sequencing

DNA barcoding

Bio-molecular databases in bioinformatics

Phylogenetic tree and its reconstruction (distance-based methods, maximum parsimony, maximum likelihood)

Course learning outcomes

By the end of the semester, students will be able to:

- define variety of animal associations,
- demonstrate an understanding of the physiology, biochemistry, ecology, evolution, and molecular biology of parasites, and
- use the bioinformatics for molecular phylogenetic analysis.

- 1. Animal Parasitology by JD Smyth. Cambridge University Press.
- 2. Essentials of Parasitology by GD Schmidt. Brown Publishers
- 3. Encyclopaedia of Bioinformatics and computational biology by Shoba Ranganathan, Michael Gribskov, Kenta Nakai, Christian Schonbach.
- 4. Evolutionary Parasitology: The Integrated Study of Infections, Immunology, Ecology, and Genetics by Paul Schmid–Hempel. OUP Oxford.
- 5. Foundation of Parasitology by GD Schmidt LS Roberts. McGraw Hill Publishers.
- 6. General Parasitology by TC Cheng. Academic Press
- 7. Helminths, Arthropods and Protozoa of domesticated animals by EJL Soulsby. ELBS and Bailliere Tindall. London.
- 8. Human Parasitology by BJ Bogitsh, CE Carter, TN Oeltmann. Academic Press.
- 9. Introduction to Parasitology by AC Chandler & CP Read. John Wiley & Sons Inc.
- 10. Parasite genomics protocols by SE Melville. Humana Press.
- 11. Parasitology by Chaterjee K.D. Medical Pulisher Calcutta.
- 12. Parasitology: The Biology of animal parasites by ER Noble GA Noble
- 13. Modern Parasitology by FEG Cox. Blackwell Scientific Publications.
- 14. *Molecular Parasitology* by JE Hyde. Open University Press. London.

ZOOLCC-302A: Biology of Reproduction

Theory Credit: 04	Teaching Hours: 60
Course objectives	
The main objective of this course is to study the physiology of male and	I female reproductive
axis and reproductive cycles and develop understanding of endocrin	ology of pregnancy,
parturition and lactation. It also emphasizes to understand the inter-	relationship between
reproduction and immunity, and study the seasonality in reproduction.	
Unit I	
Physiology of male and female reproductive axis	
Reproductive system	
Gonadal differentiation and theories	04
Differentiation of reproductive tract	04
Hormones of reproductive axis (GnRH/ GnIH; luteinizing	
[LH] and follicle stimulating hormone [FSH]; sex steroids	
Unit II	
Reproductive cycles and pregnancy	
Estrus cycle and menstrual cycle	04
Cellular details and hormonal regulation	
Pregnancy and its hormonal regulation	04
Implantation window, mechanism of implantation	
Trophoblast differentiation	
Placentation	04
Mechanism of placentation	
Placental transport function	
Unit III	
Endocrinology of parturition and lactation	
Parturition and its control	03
Oxytocin and prolactin	0.5
Lactation and its hormonal control	06
Anatomical changes in mammary glands	
Lactogenesis, Colostrum and its composition	
Cellular mechanism of milk secretion	
Metabolic homeostasis in human pregnancy and lactation	03
Unit IV	
Reproduction and immunity	
Immunity during pregnancy	05
Suppression of immunity	03
Role of hormones	
Immune tolerance	03

Autoimmune	hases	αf	infe	rti	litx
Autommune	vases	OΙ	IIII	πu	шιν

04

Unit V

Seasonality in reproduction

Pineal gland 06

Melatonin biosynthesis

Melatonin as clock and calendar

Neuroendocrine regulation of seasonality in reproduction

06

Student learning outcome

The course will enable the students:

- To study the physiology of male and female reproductive axis and reproductive cycles
- To develop understanding of endocrinology of pregnancy, parturition and lactation
- To understand the interrelationship between reproduction and immunity
- To study the seasonality in reproduction

- 1. Encyclopedia of Reproduction: Ernst Knobil and Jimmy D. Neill, Volumes 1-4, Academic Press
- 2. The biology of reproduction: Giuseppe Fusco and Alessandro Minelli, Cambridge University Press
- 3. Biology of reproduction: Peter J. Hogarth, Blackie
- 4. Williams Textbook of Endocrinology: H. M. Kronenberg, S. Melmed, K. S. Polonsky and
- P. R. Larsen, 2008, 11th Edition, Saunders, Elsevier

ZOOLEL-302B: Insect Physiology

Teaching Hours: 60

Theory Credit: 04

Course objectives

 To acquaint students with the physiological systems of insects 	
• To acquaint students with habitat dependent change in structure of physic	logical
systems	
• To acquaint students with habitat dependent change in physiological functions	
Unit I	
Digestive system	06
Alimentary canal and its modification	
Salivary glands	
Nutritional requirements of insect	
Physiology of digestion	
Digestion of special food stuffs (wool, collagen, keratin, pollen, silk, wax)	
Intermediary metabolism of carbohydrates, fats and protein, fat body	
Ectosymbiotic fungi	
Endosymbionts	
Circulatory system	06
Structure of heart	
Mechanism of circulation	
Reversal of heart beat	
Haemocytes	
Type	
Origin and longevity	
Haemopoietic organs	
Changes in haemocyte population	
Unit II	
Nervous system	05
Structure of brain	
Nerve chord	
Neurotransmitters and neuromodulator system	
Cholinergic systems	
Biogenic amines	
Amino acids	
Neuropeptides	
Sense organs	07
Mechanoreceptors	
Chemoreceptors (Olfactory and gustatory)	
Auditory organs & hearing;	

Visual organs and image formation	
Unit III	
Respiratory system	06
General organization	
Types of spiracles	
Gaseous Exchange mechanisms and respiratory adaptations in terrestrial insects	
Gaseous Exchange mechanisms and respiratory adaptations in aquatic insects	
Respiratory adaptations in endoparasitic insects	
Excretory system	06
Organs of excretion	
Nitrogenous excretion	
Excretory products	
Storage excretion	
Production of urine and its hormonal regulation	
Terrestrial and salt water insects	
Control of diuresis	
Water regulation	
Detoxification	
Unit IV	
Reproductive system	06
Anatomy of reproductive organs	
Spermatogenesis and oogenesis	
Mating, insemination, oviposition	
Various modes of reproduction	
Insect Development	06
Development up to three germ layers	
Physiological control of moulting and metamorphosis	
Various types of larvae and pupae	
Unit V	
Endocrine glands	05
Historical perspective	
Endocrine glands and concept of neurosecretion	
Biosynthesis and degradation of hormones	
Function of JH and ecdysteroids	
Mechanism of action of JH and ecdysteroids	
Vertebrate hormones in insects	
Eicosanoids and their functions	

Sound and light producing organs

Mechanism of sound and light production

Integument and cuticular	· sclerotization
--------------------------	------------------

04

Structure of integument

Structure of cuticle

Components of sclerotized cuticle (structural proteins, chitin, catechols, enzymes)

Dityrosine crosslinks

Quinone tanning

β-sclerotization

Differential mechanism of tanning

Combined pathway and cross-linking mechanisms

Free radical formation

Photoperiodism 01

Diapause and its regulation in insects

02

Student learning outcomes

At the end of the course the students will be able to demonstrate:

- an understanding of the various physiological systems of insects
- an understanding of structural differences in the physiological systems of insects from varied habitats
- an understanding of the functional differences in insect physiological systems

- 1. Chapman, R. (2012). The Insects: Structure and Function (S. Simpson & A. Douglas, Eds.). Cambridge: Cambridge University Press
- 2. Gullan, P. J., & Cranston, P. S. (2014). The insects: an outline of entomology. John Wiley & Sons.
- 3. Marshall, S. A. (2006). Insects: their natural history and diversity: with a photographic guide to insects of eastern North America. Richmond Hill, Ont.: Firefly Books.
- 4. Nation, J.L. Insect Physiology and Biochemistry 3rd edition. CRC press
- 5. Klowden: Physiological Systems in Insects (2002, Academic Press)
- 6. McGavin: Essential Entomology (2001, Oxford Univ Press)
- 7. Wigglesworth: Principles of Insect Physiology (1972, ELBS)

ZOOLEL-302C: Fish Ecology, Aquaculture and Capture Fisheries

Total Credit:04	Teaching Hours: 60
Course objectives	_
Unit I	
Ecology of teleostean fishes	
Water quality requirements	02
Temperature, salinity, osmotic pressure, pH, dissolved oxygen,	carbon dioxide,
nitrogen, alkalinity and turbidity	03
Toxic substances and their effects	02
International water code for responsible fisheries	02
Aquatic weeds and their control	02
Exclusive economic zone	01
Unit II	
Fish pond management	
Construction and lay-out of different types of ponds (nursery, re	aring,
and stocking)	02
Formulation and operation of different types of hatcheries	02
Productivity of the pond (planktons and Live food organism)	02
Pond management and stocking materials	
Stocking materials (spawn, fry and fingerlings) and their culture	02
Manuring, liming, eradication of predatory and weed fishes, pre-	datory aquatic insects
and their control	03
Fish poison	01
Unit III	
Capture fisheries	
Freshwater fisheries (River, Lakes, and Reservoir)	02
Cold water fisheries and Hill stream adaptation	02
Brackish water fisheries	02
Marine fish resources of India	01
Problems and prospects of Mariculture	01
Capture fisheries of India with reference to Elasmobranchs	02
Bombay duck, Catfishes, Eels, Thread fish, Theropon, Mackerel	
Crustacean and Molluscan Fisheries	02
Unit IV	
Aquaculture	
Problems and prospects of aquaculture	02
Breeding habits of carps: Induced breeding and Bundh Breeding	· · · · ·
and Exotic)	02

Polyculture and Monoculture	02
Integrated fish farming and their management	02
Nets, Gears and Boats used for Fishing	02
Aquarium fish and their maintenance	02
Unit V	
Fish products and fish diseases	
Fish preservation and processing (traditional and advanced methods)	02
Fish by-products	02
Fish marketing and trade	02
Fish pathology: prevention, prophylaxis and treatment of Fungal, Bacterial,	

04

01

01

Course learning outcome

The present course will prepare the students for:

Viral and Protozoan Diseases

Fisheries Cooperative Societies of India

Fish in relation to Man and Human Welfare

- the self-employment, and
- the jobs related to the fish and fisheries.

- 1. Jhingran VG. 1991. Fish and Fisheries of India, Hindustan Publishing Corporation.
- 2. A Hatchery Manual for the Common, Chinese and Indian Major Carps by V.G. Jhingran and R.S.V. Pullin, Asian Development Bank, ICLARM, Manila, Philippines
- 3. Reid GR.1961. Ecology and Inland waters and Estuaries. Rein Hold Corp., New York.
- 4. Pilley, TVR and Dill, WMA. 1979. Advances in Aquaculture. Fishing News Books, Ltd. England. 11.
- 5. Pillay TVR and Kutty MN. 2005. Aquaculture- Principles and Practices. Blackwell.
- 6. Nikolsky GV. 1963. Ecology of Fishes, Academic Press.
- 7. Norman JR and Greenwood PH. 1975. A History of Fishes, Halsted Press.
- 8. Potts GW and Wootten RJ. 1984. Fish Reproduction: Strategies and Tactics, Academic Press.
- 9. De Silva SS & Anderson TA. 1995. Fish Nutrition in Aquaculture. Chapman & Hall Aquaculture Series.
- 10. Ojha JS. 2005. Aquaculture Nutrition and Biochemistry. Daya Publ.
- 11. Rath RK. 2000. Freshwater Aquaculture. Scientific Publ.
- 12. Landau M. 1992. Introduction to Aquaculture. John Wiley & Sons.

ZOOLEL-302D: Biology of parasites

Credits: 04

Teaching Hours: 60

Course objectives	
The course will enable the students with the knowledge on:	
 parasites of medical importance in humans, livestock, and fish, and 	
• general morphology, biology, life-cycle, pathogenicity and control of parasites.	
Unit I	
Protozoa	12
General morphology, biology, life-cycle, pathogenicity and control of:	
Visceral rhizopods and flagellates: Entamoeba histolytica and Giardia lan	ıblia
Haemoflagellates: Trypanosoma brucei rhodesiense, Leishmania donovan	i
Haemosporina: <i>Plasmodium vivax</i>	
Unit II	
Monogenea	10
General morphology, biology, life-cycle, <i>pathogenicity</i> and control of:	
Polystoma	
Diplozoon	
Gyrodactylus	
Unit III	
Trematoda and Cestoda	18
General morphology, biology, life-cycle (including larval forms), pathogenicity	
and control of:	
Visceral flukes (Fasciolopsis buski, Schistosomo sp.)	
Lung flukes (Paragonimus westermani)	
General morphology, biology, life-cycle (including larval forms), pathogenicity	
and control of:	
Intestinal tapeworms (Taenia solium, Diphyllobothrium latum)	
Extraintestinal tapeworms: Human cysticercosis, Human hydatidosis	
Unit IV	
Nematoda and Acanthocephala	12
General morphology, biology, life-cycle (including larval forms), pathogenicity	

Intestinal nematodes: Ancylostoma duodenale, Trichiura trichiura

General morphology, biology, life-cycle (including larval forms), pathogenicity

and control of:

Pallisentis sp.

Blood and tissue nematodes: Wuchereria bancrofti, Dracunculus medinensis

Unit V

Arthropoda 8

Significance of Arthropods as vectors of human pathogens:

Biting dipterans (mosquitoes, tsetse flies)

Non-biting dipterana (common house fly)

Acarians (ticks and mites)

Other insects (fleas, lice)

Course learning outcomes

By the end of the semester, students will be able to:

- recognize significant morphological characteristics for identification of each of the major parasite group,
- value the diversity of parasites,
- describe the basic biology, morphology and life history of selected parasites, and
- apply the knowledge to generate novel ideas for the management of diseases.

- 1. Animal Parasitology by JD Smyth. Cambridge University Press.
- 2. Essentials of Parasitology by GD Schmidt. Brown Publishers
- 3. Foundation of Parasitology by GD Schmidt LS Roberts. McGraw Hill Publishers.
- 4. General Parasitology by TC Cheng. Academic Press
- 5. Helminths, Arthropods and Protozoa of domesticated animals by EJL Soulsby. ELBS and Bailliere Tindall. London.
- 6. Human Parasitology by BJ Bogitsh, CE Carter, TN Oeltmann. Academic Press.
- 7. Introduction to Parasitology by AC Chandler & CP Read. John Wiley & Sons Inc.
- 8. Parasite genomics protocols by SE Melville. Humana Press.
- 9. Parasitology by Chaterjee K.D. Medical Pulisher Calcutta.
- 10. Parasitology. The Biology of animal Parasites by ER Noble GA Noble
- 11. Modern Parasitology by FEG Cox. Blackwell Scientific Publications.
- 12. Molecular Parasitology by JE Hyde. Open University Press. London.

ZOOLIN-301: Summer Internship/ Field Work

Semester	Course	Summer Internship/ Field Work	Credits	Total Hours
III	ZOOLIN-301	-	4	60

Total Credits: 04 Total Hours: 60

The aims of Field work are:

Fieldwork is an experiential process in which students will apply the theories learned in the classroom to work in a field setting.

It will include a) study tours to national institutes, diagnostic laboratories, libraries, parks and sanctuaries etc., b) Field exercises in identification of representative animal species, and c) field-based projects and hands-on exposure activities.

ZOOLIER-301: Interdepartmental Course

Semester	Course	Interdepartmental Course	Credits	Total Lectures
III	ZOOLIER-301	Public Health	4	60

ZOOLIER-301: Public Health

Total Credits: 04	Teaching Hours: 60	
Course objectivesProviding conceptual knowledge of different diseases and their	ir prevention	
 Explaining measures for healthy life 	ii prevention	
 Discussing Government's role in disease management 		
 Discussing epidemiology of diseases 		
Unit I		
Human diseases		
Communicable/Vector borne diseases- Malaria, Sleeping sick	ness (04
Non-Communicable diseases- Cancer, AIDS	(04
Metabolic diseases - Diabetes, BP, Thyroid	(02
Genetics diseases- PKU, Sickle Cell Anaemia, Thalassemia	(02
Unit II		
Disease prevention		
Tackling antimicrobial resistance		04
Measures for reduced maternal & child/infant mortality rate		04
Prevention of environmental pollution & its degradation	(04
Unit III		
Measures for healthy life		
Micronutrients, their role, deficiency & related problems		02
Improved nutrition for all age groups		02
Application of yoga & physical exercise for healthy life (their		$\frac{02}{02}$
Obesity, Non-alcoholic fatty liver		$\frac{02}{02}$
Hazards of tobacco chewing & smoking		02
Importance of personal & public hygiene & better sanitary hal	oits (02
Unit IV		
Government's role in public health		
Strong Government's accountability for enforcement of qualit	<u> </u>	02
Regular immunization/vaccination programmes eg., pulse pol	io (04
Adequate measures for preventing spread of vector borne dise		02
Government's role in propagation of family planning measure	s, AIDS awareness (04
Unit V		
Epidemiological studies		
Epidemiology & statistical analysis of difference diseases		06
Population genetics	(06

Student learning outcomes

At the end of the course the student will have

- Enhanced awareness towards various human diseases, their control and prevention.
- Information on improvement of life style & health via quality health measures.

- 1. Public Health and Hygiene by Sorna Raj and KumaresanSaras Publication
- 2. Public Health Management: Principle and Practice by Sundar Lal, Vikas, CBS Publishers, 2018
- 3. A practical guide for PG course in Community medicine, Public Health and Health management by Sudip Bhattacharya and Sailesh Tripathi, 2018
- 4. Park's Textbook of Preventive and Social Medicine by K. Park 2017

Semester IV

ZOOLCC-401: Molecular Biology and Genetics

Total Credits: 04 Teaching Hours Course objectives	s: 60
• To study the structure of gene and learn how the information contained within t gets transferred from one generation to another.	
 Human genetics will impart knowledge about the human chromosome constitution would help in applying basic principles of chromosome behavior to disease context. 	
To create awareness of genetic diseases To loorn molecular diagnostic means for multiple diseases.	
 To learn molecular diagnostic means for multiple diseases Overall, this course will highlight evolution of the concept of gene and 	ite
amalgamation with molecular biology and study	1 165
Unit I	
DNA replication	
DNA polymerases & Enzymes involved in replication	03
Origin of replication and formation of primosome	02
Unit of replication	01
Replication fork and replisome	02
Fidelity of replication	02
Termination of replication	02
Unit II	
Transcription & Translation	
Fine structure of gene, transcription unit	02
Initiation, elongation and termination of transcription in prokaryotes and eukaryotes	02
RNA polymerases, Transcription factors and machinery	03
Formation of initiation complex	02
Initiation, elongation and termination of translation in prokaryotes and eukaryotes	04
Aminoacylation of tRNA, tRNA-identity, aminoacyl tRNA synthetase	02
Unit III	
Regulation of gene expression	
Regulation at transcriptional level: Operon system, lac, trp, arabinose operons	03
Post-transcriptional modifications: Capping, Splicing, Polyadenylation, RNA edit	_
Role of chromatin in gene expression	02
Regulation at translational level	02
Post- translational modifications: Protein folding, Intracellular protein degradation Gene silencing, RNAi	02
Unit IV	

02

Mendelian Genetics

Mendel's laws and their chromosomal basis

Extension of Mendel's principles: incomplete dominance and co-	
dominance, basis of dominant and recessive mutations, complementation	
test, multiple alleles, pseudoalleles	02
Gene action- from genotype to phenotype-penetrance and expressivity, gene	
interaction, epistasis, pleiotropy, phenocopy, genomic imprinting	02
Linkage and crossing over, sex linkage, sex limited and sex influenced characters	
Extra chromosomal inheritance: Mitochondrial genes, maternal inheritance	01
Sex determination and dosage compensation	
Sex determination- in humans, <i>Drosophila</i> and other animals	01
Dosage compensation of X-linked genes-hyperactivation of X-linked gene in	01
Male <i>Drosophila</i>	
Inactivation of X-linked genes in female mammals	01
Unit V	
Gene mutation and DNA repair	
Types of gene mutations	01
Methods for detection of induced mutations	01
P-element insertional mutagenesis in <i>Drosophila</i>	01
DNA damage and repair	02
Mutant types (lethal, conditional, biochemical, loss of function, gain of function,	,
germinal verses somatic mutants, insertional mutagenesis)	02
Gene mapping methods	
Methods of gene mapping: 3-point test cross in <i>Drosophila</i>	01
Gene mapping in humans by linkage analysis in pedigrees	02
Mapping with molecular markers, using somatic cell hybrids	01
Gene mapping in bacteria by conjugation, transformation & transduction	01

Course Outcome

- The course offers a detailed and conceptual understanding of molecular processes *viz*. Replication, transcription, translation *etc*. underlying survival and propagation of life at molecular level. It will help students to understand how genes are ultimately expressed as proteins which are responsible for the structure and function of all organisms. To learn how four sequences (3 letter codons) generate the transcripts of life and determine the phenotypes of organisms.
- The student will have awareness about genetic diseases, their types and causes. Also the understanding of molecular techniques will provide improved diagnosis and management of these diseases.
- The principles of inheritance, linkage and crossing over which lead to variations will be made clear as well as the application thereof in gene mapping

Suggested Reading

1.	Strickberger	Genetics	Mcmillan	1985
2.	Griffiths et al	Modern Genetic Analysis:	Freeman& Co	2004
		Integrating Genes and		
		Genome <u>s,</u>		
3.	Gardner et al	Principles of Genetics	John Wiley	1991
4.	Hartl and Jones	Genetics-Principles and	Jones & Bartlett	1998
		Analysis		
5.	Hartwell et al	Genetics: From Genes to	McGraw-Hill	2004
		Genomes		
6.	Gilbert	Developmental Biology	Sinauer	2003
7.	Snustada and	Principles of Genetics	JohnWiley&	
	Simmons		Sons	
8.	Russell	Genetics	Benjamin-	
			Cummings	
9.	Alberts et al	Molecular Biology of the Cell	Garland	2002
10.	Lodishet al	Molecular Cell Biology	Freeman	2004
11.	Cooper	Cell: A Molecular Approach	ASM Press	2000
12.	Karp	Cell and Molecular Biology	Wiley	2002
13.	Watson et al	Molecular Biology of the Gene	Pearson	
14.	Nelson & Cox	Lehninger Principles of	Freeman & Co,	
		Biochemistry	USA	
15.	Pierce	Genetics	Freeman	

ZOOLEL-401A: Endocrine Disorders and their Diagnostics

Theory Credit: 04 Teaching Hours: 60 Course objectives
 To study the endocrine techniques used in endocrine researches To understand the endocrine disorders and pathophysiologies To study various reproductive technologies in treating infertility To understand current state of Endocrinology and Reproductive Biology To provide students understanding of conditions resulted from abnormal hormone secretion and the laboratory tests that are used to diagnose these conditions.
Unit I
Classical endocrine techniques 12
Organ/ Tissue manipulation
Histological methods
Surgeries
Tissue dissection and serum collection
Subcutaneous injections
HRT
Hormone assays
RIA, ELISA, HPLC
Hormone pellet construction
Hormone content extraction
Unit II
Modern endocrine techniques 12
RNA extraction
RT PCR
qPCR
Hormone localization
Northern Blot
ICC, ISH
TI:4 TIT
Unit III Endowing disorders and noth analysis logics
Endocrine disorders and pathophysiologies 12
Disorders of major glands Pituitary Disorders
•
Thyroid disorders Adrenal disorders
Other disorders
Osteoporosis
Polycystic Ovary Syndrome
Polyendocrine disorders
Oligospermia

Unit IV

Infertility and reproductive technologies

Primary and secondary infertility

implantation failure, recurrent abortions, preeclampsia

Reproductive techniques

Invitro fertilization, Embryo transfer

GIFT, ZIFT, Cryopreservation of gametes and embryos

Contraceptives, HRT

Unit V

Current state of endocrinology and reproductive biology

12

12

Disease patterns across India

Endocrine diseases (Diabetes, PCOD, Thyroid hormones related)

Endocrinology of diseases

Breakthrough researches

Indian contribution in the field

Student learning outcome

The present course has been designed to:

- 1. provide students the knowledge and understanding of the concepts and theories related to endocrine disorders.
- 2. carry out the researches related to the basic and modern aspects of endocrinology.

Suggested readings

- 1. Vertebrate Endocrinology: David O. Norris, James A. Carr, 2013, 5th Edition, Academic Press
- 2. Williams Textbook of Endocrinology: H. M. Kronenberg, S. Melmed, K. S. Polonsky and
- P. R. Larsen, 2008, 11th Edition, Saunders, Elsevier
- 3. Comparative Vertrebrate Endocrinology: P. J. Bentley, 3rd Edition, Cambridge University Press
- 4. Neuroendocrinology: Charles B. Nemeroff, xxxx, CRC, US
- 5. An Introduction to Neuroendocrinology: Richard E. Brown, 2005, Cambridge University Press
- 6. Endocrinology: Mac E. Hadley, Jon E. Levine, 2009, 6th Edition, Pearson Education
- 7. Molecular Endocrinology: F. F. Bolander, 3rd Edition, 2004, Elsevier Academic Press
- 8. Essential Endocrinology: Darville Brook, C.G. & Marshall, Wiley Blackwell
- 9. Endocrinology at a Glance: Greenstein B, Wiley Blackwell
- 10. Evidence-Based Endocrinology: V. M. Montori (ed.), Humama Press
- 11. Encyclopedia of Reproduction: Ernst Knobil and Jimmy D. Neill, Volumes 1-4, Academic Press

ZOOLEL-401B: Applied Entomology and Pest Management

Theory Credit: 04	Teaching Hours: 60
Course objectives	
 an understanding of what is a pest 	
 an understanding of how insects negatively affect human life 	
 an understanding of mode of damage by insects 	
• an understanding of control measures used to manage harmful	insect pest populations
Unit I	
Agricultural and horticultural pests-1	
Characteristic features, biology, nature of damage and manager	ment measures of:
Important insect pests of cotton	03
Important insect pests of sugarcane	03
Important insect pests of vegetables	03
Important insect pests of oil seeds	03
Unit-II	
Agricultural and horticultural pests-2	
Characteristic features, biology, nature of damage and manager	nent measures of:
Important insect pests of fruit crops, especially mango	02
Important insect pests of cereals and pulses	03
Important insect pests of stored grains	02
Polyphagous insects	02
Structural Pests	03
Unit III	
Urban entomology	
Medical Entomology	04
Veterinary Entomology	04
Forensic Entomology	04
Unit IV	
Industrial entomology	
Apiculture	04
Sericulture	04
Lac-culture	04
Unit V	
Pest management	
Components of Insect Pest Management including Mechanica	al, Physical, Cultural,
Chemical, Legal, Ecological, Biological, Microbial, Recent trends	06
Concept and Procedure of Integrated Pest Management	02
Mode of action of organochlorine, organophosphorous and carbamat	te pesticides 02

Student learning outcomes

At the end of the course the students will be able to:

- identify insect pests
- understand pest population dynamics
- understand pest management measures

Suggested readings

- 1. Alford: A textbook of Agricultural Entomology, Blackwell 1999
- 2. Atwal and Dhaliwal: Agricultural pests of India and South-East Asia, Kalyani Publishers, Byrd and Castner: Forensic Entomology, CRC Press, 2001
- 3.Dhaliwal and Arora: Principals of Insect pest management, National AgriculturalTechnology Information Centre, Ludhiana, 1996
- 4. Dhaliwal and Arora: Trends in Agricultural Insect pest Management, Commonwealth Publ., 1994
- 5. Hill: Pest of stored foodstuffs and their control, Springer, 2002
- 6. Metcalf and Flint: Destructive and useful insects and their control, McGraw Hill, 1962
- 7. Mullen and Durden: Medical and Veterinary Entomology, Academic Press, 2002
- 8. Norris et al: Concepts in Integrated Pest Management, Prentice-Hall, 2002
- 9. Pedigo: Entomology and Pest Management (4th ed.), Prentice Hall, 2002
- 10. Pruthi: A Text Book of Agricultural Entomology, ICAR, New Delhi, 1969
- 11. Purohit: Agricultural Biotechnology (2nd ed.) Agrobios (India), 2003
- 12. Racheigl and Racheigl: Biological and biotechnological control of insect pests, CRCPress, 1998
- 13. Schoonhoven et al.: Insect-plant Biology- from physiology to evolution (1st ed.)Chapman & Hall, 1998
- 14. Srivastava: A Text Book of Applied Entomology (Vol. I & II, 2nd ed.) Kalyani Publ., 2001
- 15. A Textbook of Applied Entomology Vol. I and II by Srivastava and Dhaliwal
- 16. Agricultural Pests Of South Asia And Their Management by Atwal and Dhaliwal
- 17. Industrial Entomology by Omkar. Springer Nature
- 18. Ecofriendly Pest Management for Food Security by Omkar, Academic Press
- 19.Introduction to General and Applied Entomology by Awasthi
- 20. Handbook of Agricultural Entomology by van Emden
- 21. Pests and Their Management by Omkar, Springer Nature

ZOOLEL-401C: Applied Fish and Fisheries

Total Credit:04	Teaching Hours: 60
Course objectives	S
Unit I	
Fish biology	
Study of morphometric and meristic characteristics	02
Study of length-weight and length-length relationship	02
Determination of age and growth using scale, otolith and opercul	
Estimation of absolute and relative fecundity	02
Artificial breeding of Indian major carp	02
Unit II	
Fish ecology	
Physicochemical analysis of pond water	02
Estimation of DO	02
Estimation of hardness	02
Estimation of alkalinity	02
Estimation of pH	02
Estimation of temperature	02
Unit III	
Fish biodiversity assessment	
Biodiversity: concepts, patterns and measurement	02
Relative abundance	02
Measurement and estimation of species richness and evenness	03
Species diversity indices	03
Phenotypic Plasticity and Genetic Differentiation in Traits	02
Unit IV	
Fish taxonomy and biosystematics	
Fish collection and preservation	03
Identification of ichthyo-fauna through keys	07
Fish fin formula	02
Unit V	
Chromosome manipulation and genotoxicity assessment	
DNA isolation of fish	02
Karyotyping of selected fish	02
DNA polymorphism through RAPD	02
Micronuclei test (MNT)	03
Chromosomal aberration test (CAT)	03

Course learning outcome

The present course has been designed to provide students the knowledge of tools and techniques:

to carry out the researches related to the basic and modern aspects of fish and fisheries.

Suggested readings

- 1. William RD and Matthew G. 1984. Multivariate Analysis, Methods and Applications. John Wiley & Sons.
- 2. Biradar RS. 2002. Course Manual on Fisheries Statistics. 2nd Ed. CIFE, Mumbai.
- 3. Welch PS. 2003. Limnological Methods. Narendra Publ. House.
- 4. Nelson JS. 2006. Fishes of the World, John Wiley and Sons, Inc., New Jersey.

ZOOLEL-401D: Parasitological Techniques

Credits: 04 Teaching Hour	rs: 60
Course objectives	
The course will enable the students to:	
• learn and perform technical procedures such as collection of host and pa	arasite
specimens and preparation of reagent,	
 process parasites using a variety of standardized techniques, 	
 performs microscopic examinations of processed specimens, and 	
 detect and identify parasites stages using both morphological and molecular taxon 	nomy.
Unit I	
Sampling and processing of vertebrate hosts (with special reference to fish)	12
Types, preparation and applications of reagents used in parasitology laboratory	
Survey and collection of hosts	
Humane killing of hosts	
Necropsy and examination of hosts for recovery of parasites	
Faecal examination	
Unit II	
Sampling and processing of parasites	12
Collection, fixation and preservation of ectoparasites	
Collection, fixation and preservation of endoparasites	
Staining protocols	
Preparation of temporary and permanent 'whole mounts'	
Histological techniques	
Unit III	
Morphological characterization	12
Microscopic examination	
Introduction to optics	
Principles of image formation	
Principle, components, and applications of Light microscopy, Phase-co	
microscopy, Fluorescence microscopy, Confocal microscopy, and Ele	ectron
microscopy (SEM, TEM and STEM)	
Morphometric analysis	
Measurements	
Drawing of parasites to scale	
Digital image analysis	

Isolation of DNA

Molecular characterization

Unit II

12

PCR Thermocycler: amplification of DNA

Gel electrophoretic apparatus: qualitative analysis of DNA

Spectrophotometer: quantitative analysis of DNA

Centrifuge: collection of DNA precipitate

DNA Sequencer: automation of DNA sequencing

Unit V

Ecological, behavioural and immunological techniques

12

Analysis of microhabitat distribution of ectoparasites

Analyses of parasite communities-biodiversity indices

Collection and analysis of water quality parameters for fish parasites

Analysis of behaviour of cercariae

Detection of antibodies by basic indirect ELISA

Course learning outcomes

By the end of the course, students should be able to:

- examine and identify grossly parasites and their stages and parasitic lesions in different organs,
- examine and identify the microscopic morphology of parasites and their larval stages of medical importance in fixed stained smears, and
- use different kinds of microscopes and modern equipments used in Parasitology.

Suggested literature

- 1. Animal Parasitology by JD Smyth. Cambridge University Press.
- 2. Essentials of Parasitology by GD Schmidt. Brown Publishers
- 3. Foundation of Parasitology by GD Schmidt LS Roberts. McGraw Hill Publishers.
- 4. General Parasitology by TC Cheng. Academic Press
- 5. *Helminths, Arthropods and Protozoa of domesticated animals* by EJL Soulsby. ELBS and Bailliere Tindall. London.
- 6. Human Parasitology by BJ Bogitsh, CE Carter, TN Oeltmann. Academic Press.
- 7. Introduction to Parasitology by AC Chandler & CP Read. John Wiley & Sons Inc.
- 8. Parasite genomics protocols by SE Melville. Humana Press.
- 9. Parasitology by Chaterjee K.D. Medical Publisher Calcutta.
- 10. Parasitology. The Biology of animal Parasites by ER Noble GA Noble
- 11. Modern Parasitology by FEG Cox. Blackwell Scientific Publications.
- 12. Molecular Parasitology by JE Hyde. Open University Press. London.

ZOOLMT-401: Master Thesis/Dissertation (Project/ Assignment/ Case report/ Literature review)

Credits: 08 Contact Hours: 120

Course objectives

It will be a unique opportunity for the students to study intensively a biological question of their interest. They will have to make a choice from the available titles from which the preferred choices will be made and then work on it in the guidance of a teacher.

Aims

- Literature searching to research a specific scientific topic.
- Interpretation and analysis of scientific literature.
- Scientific writing to enable production of a comprehensive literature review.
- Allow students to explore in depth a topic that is of interest to them.

Learning outcomes

Students will be able to-

- understand in depth a scientific area of interest
- critically appraise research papers
- develop literature searching and scientific writing skills
- develop lay writing skills (abstract)
- develop organizational and time management skills
- develop oral presentation skills (in tutorials)
- develop written and oral communication skills

ZOOLIRA-401: Intradepartmental Course

Semester	Course	Intradepartmental Course	Credits	Total Lectures
IV	ZOOLIRA-401	Scientific Writing and Communication	4	60

ZOOLIRA-401: Scientific Writing and Communication

Total Credits: 04 Teaching Hours: 60

Course objectives

This course aims to demystify the writing process and teach the fundamentals of effective scientific writing and communication. The objectives of this course are:

- to help students to learn technical writing, which is clear, simple and structured logically, so as to communicate their research to others,
- gather published and unpublished sources of information and bring them to bear on scientific questions,
- critically read scientific writing,
- access electronic sources of information, including but not limited to internet searches, library databases, and public information and data,
- learn the structure and functions of different components of scientific papers to effectively communicate scientific findings,
- learn techniques for effective communication of scientific information in oral and poster presentations,
- understand the ethical boundaries associated with scientific communication.

Unit I: Demystifying the Writing process

12

- Introduction
- Learn the structure and function of a scientific paper
- Writing Basics for the Scientific Manuscript
- How to integrate text, figures and tables into coherent results

Unit II: Scientific Writing Tools

- Literature survey and resources, abstracts, periodicals, search engines
- Computer awareness: drafting, editing, graphical, statistical presentations
- Data search and retrieval: bibliography, biological databases

Unit III: Communicating as a Scientist

12

- Effective Communication
- Audience and Purpose
- Addressing Specific Audiences

Unit IV: Classrooms/ Conferences and Presentations

12

- Oral Presentation Structure
- Presentation Slides
- Effective Oral Presentations
- Answering Questions
- Panel Discussions
- Chairing sessions

Unit V: Practical Skills/ Correspondence

- E-mail
- Memos and Progress Reports
- Formal Letters
- Résumés
- Thank You Letter
- https://www.nature.com/scitable/ebooks/english-communication-for-scientists-14053993/118520572/

Course learning outcomes

By the end of the course, students should be able to:

- Understand basic principles of scientific writing
- Correctly use and reference source material according to journal standards
- Use reference databases
- Use graphical representation to effectively convey results
- Understand the publication process
- Effectively present their scientific ideas and findings

85

12