INFORMED SEARCH STRATEGIES (Part-1)

Er. Zeeshan Ali Siddiqui Assistant Professor Deptt. of C.S.E.

FACULTY OF ENGINEERING AND TECHNOLOGY UNIVERSITY OF LUCKNOW LUCKNOW

INFORMED SEARCH STRATEGIES

Informed Search

- Informed search algorithm contains an array of knowledge such as how far we are from the goal, path cost, how to reach to goal node, etc.
- This knowledge help agents to explore less to the search space and find more efficiently the goal node.
- The informed search algorithm is more <u>useful</u> for large search space.
- Informed search algorithm uses the idea of *heuristic*, so it is also called Heuristic search.
- A heuristic technique, or a heuristic, is any approach to problem solving or self-discovery that employs a practical method that is not guaranteed to be optimal, perfect, or rational, but is nevertheless sufficient for reaching an immediate, short-term goal or approximation. ~Wikipedia

Heuristics Function_{1/2}

• Heuristic is a function which is used in Informed Search, and it finds the most *promising* path.

 It takes the current state of the agent as its input and produces the estimation of how close agent is from the goal.

• The heuristic method, however, might not always give the best solution, but it guaranteed to find a good solution in *reasonable* time.

Heuristic function estimates how close a state is to the goal.

Heuristics Function_{2/2}

• Heuristic function is represented by h(n), and it calculates the cost of an *optimal* path between the pair of states.

- The value of the heuristic function is always positive.
- Heuristic function is given as:

$$h(n) <= h^*(n)$$

Here,

- > h(n) is heuristic cost, and
- > h*(n) is the estimated cost.
- Hence, heuristic cost should be less than or equal to the estimated cost.

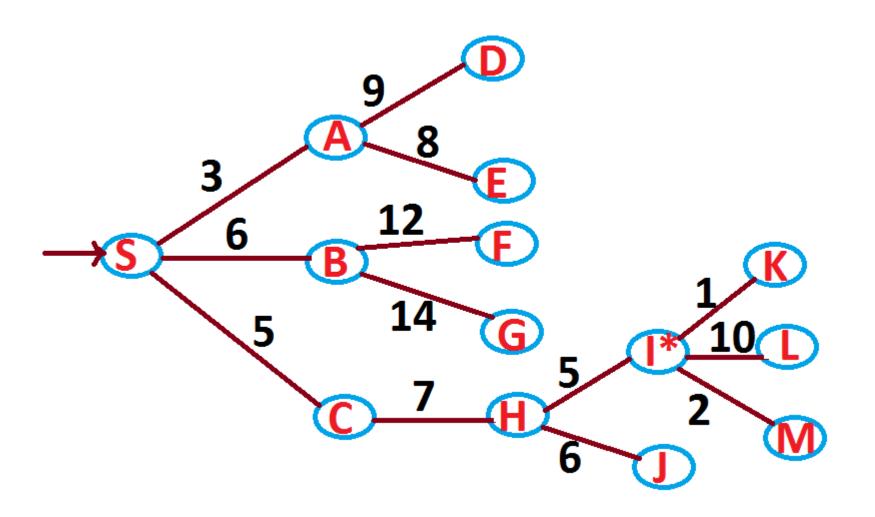
BEST FIRST SEARCH

Best First Search

- Idea: use an evaluation function f(n) for each node
 - \triangleright f(n) provides an estimate for the total cost.
 - > Expand the node n with smallest f(n).
- Implementation:
- Order the nodes in fringe increasing order of cost.
- Special cases:
 - greedy best-first search
 - ➤ A* search

GREEDY BEST FIRST SEARCH

Greedy Best First Search_{1/2}

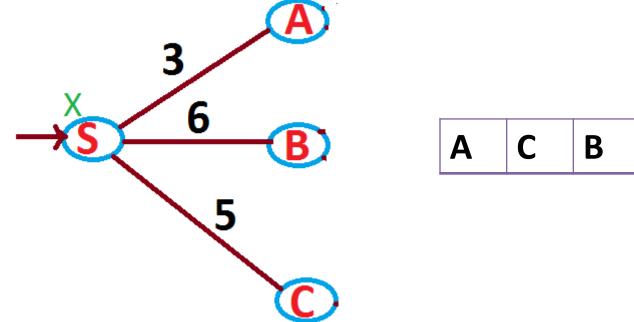

- Greedy best-first search algorithm always selects the path which appears best at that moment. It is the combination of DFS and BFS algorithms.
- In BFS and DFS, when we are at a node, we can consider any of the *adjacent* as next node.
- So both BFS and DFS blindly explore paths without considering any cost function.
- The idea of Best First Search is to use an evaluation function to decide which adjacent is most *promising* and then explore.

Greedy Best First Search_{2/2}

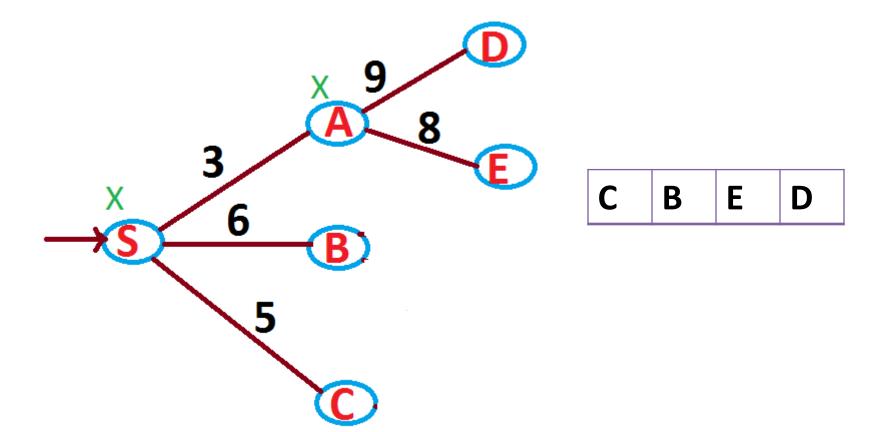
- Best-first search allows us to take the *advantages* of both algorithms.
- With the help of best-first search, at each step, we can choose the most *promising* node.
- In the best first search algorithm, we expand the node which is closest to the goal node and the closest cost is estimated by *heuristic* function, i.e. f(n) = g(n)
- Were, h(n)= estimated cost from node n to the *goal*.
- We use a priority queue to store costs of nodes. So the implementation is a variation of BFS, we just need to change Queue to PriorityQueue.

Example_{1/6}

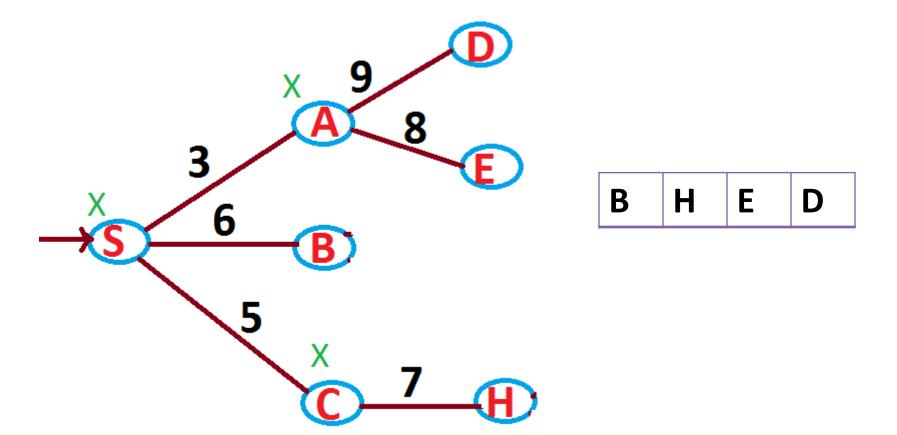
We start from source "S" and search for goal "I" using given costs.


Example_{2/6}

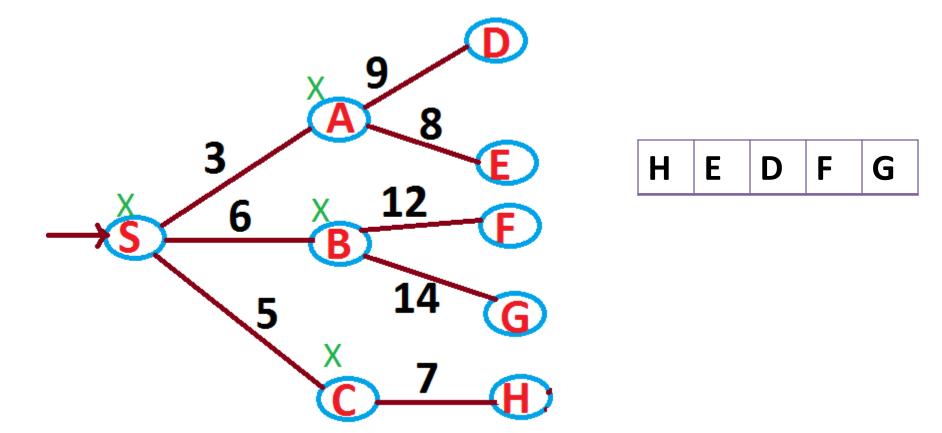
PriorityQueue initially contains S


S

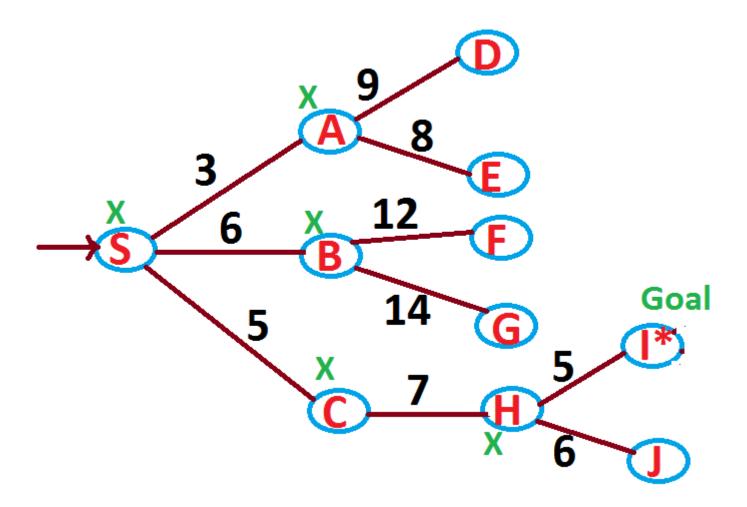
- Remove S from PriorityQueue and process unvisited neighbors of S to PriorityQueue
- PriorityQueue now contains {A, C, B} (C is put before B because C has lesser cost)


Example_{3/6}

- Remove A from PriorityQueue and process unvisited neighbors of A to PriorityQueue.
- PriorityQueue now contains {C, B, E, D}


Example_{4/6}

- Remove C from PriorityQueue and process unvisited neighbors of C to PriorityQueue.
- PriorityQueue now contains {B, H, E, D}


Example_{5/6}

- Remove B from PriorityQueue and process unvisited neighbors of B to PriorityQueue.
- PriorityQueue now contains {H, E, D, F, G}

Example_{6/6}

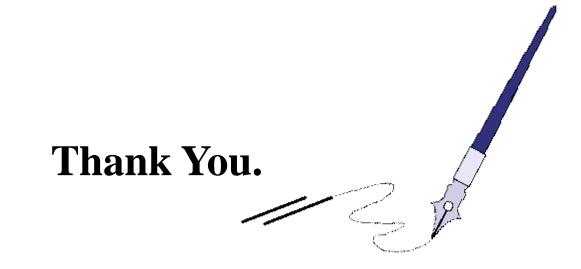
Remove H from PriorityQueue. Since our goal "I" is a neighbor of H,
we return.

Takeaways

Advantages:

- ➤ Best first search can switch between BFS and DFS by gaining the advantages of both the algorithms.
- > This algorithm is more efficient than BFS and DFS algorithms.

Disadvantages:


- > It can behave as an unguided depth-first search in the worst case scenario.
- It can get stuck in a loop as DFS.
- This algorithm is not optimal.

 Note: Performance of the algorithm depends on how well the cost or evaluation function is designed.

References

- 1. Stuart Russell, Peter Norvig, "Artificial Intelligence-A Modern Approach", Pearson.
- 2. Elaine Rich and Kevin Knight, "Artificial Intelligence", McGraw-Hill.
- 3. E Charniak and D McDermott, "Introduction to Artificial Intelligence", Pearson.
- 4. https://www.javatpoint.com/ai-informed-search-algorithms
- 5. https://www.geeksforgeeks.org/best-first-search-informed-search/

Disclaimer: The e-content is exclusively meant for academic purposes and for enhancing teaching and learning. Any other use for economic/commercial purpose is strictly prohibited. The users of the content shall not distribute, disseminate or share it with anyone else and its use is restricted to advancement of individual knowledge. The information provided in this e-content is developed from authentic references, to the best of my knowledge.

