
Introduction to Software

Engineering

By:Er. Akanksha Yadav,

Assistant Professor,

Department of computer science and engineering,foet,

University of Lucknow.

INTRODUCTION TO SOFTWARE

ENGINEERING

1

Books

TEXT Books:

• Pressman R S, Software Engineering: A

Practitioners Approach, McGraw Hill.

• Datta S, Software Engineering: Concepts

and Applications, Oxford University Press,

2010.

INTRODUCTION TO SOFTWARE

ENGINEERING

2

UNIT-1

INTRODUCTION TO SOFTWARE

ENGINEERING

3

Outline

• Software Engineering Overview

• Definitions

•Characteristics

•Components

• Evolution and Significance of Software
Engineering

• Challenges in SE

• Software development methodologies

• Software Development Process and Role of
people in development

INTRODUCTION TO SOFTWARE

ENGINEERING

4

Software

A set of machine-readable instructions
(programs) that directs a
computer's processor to perform specific
operations.

OR

A collection of instructions that enable a
user to interact with the computer or have
the computer perform specific tasks for
them.

INTRODUCTION TO SOFTWARE

ENGINEERING

5

Characteristics of Software

• It is soft or intangible part of the computer
system.

• Software deteriorates. So, Software is
constantly subject to change (alterations
are required with respect to time).

• Software is not manufactured but
developed and customized.

INTRODUCTION TO SOFTWARE

ENGINEERING

6

Characteristics of Software

(cont..)

• Software is costly to maintain.

• Software is inherently Complex.

(Complex  complicated

Complex = composed of many simple parts
related to one another.

Complicated = not well understood, or explained)

INTRODUCTION TO SOFTWARE

ENGINEERING

7

Software Component

• A software component is a modular
building block for computer software

– It is a modular, deployable, and
replaceable part of a system that
encapsulates implementation.

• A component communicates and
collaborates with

– Other components

– Entities outside the boundaries of
the system

INTRODUCTION TO SOFTWARE

ENGINEERING

8

Software Engineering

• Software engineering is an engineering

discipline which is concerned with all

aspects of software production.

• It is a process of solving customer’s

problem by the systematic development

and evolution of large, high quality

software systems within cost, time and

other constraints.

INTRODUCTION TO SOFTWARE

ENGINEERING

9

Evolution of Software

Engineering

• Programming to Software Engineering

• Hardware- Software: From Coupling to

Congress

• Advent of High-Level languages

• Advent of the Personal computer

• Global Software Development

• Return of Open Source

INTRODUCTION TO SOFTWARE

ENGINEERING

10

Programming to Software

Engineering

• Programming plays a significant role in
software development.

• This produces predictable results or
spectacular results at times.
Programming is more about creativity,
about the elegance and beauty of
algorithms.

• From a pre-eminently central position,
programming has moved to be one of
the concerns for the software
developer.

INTRODUCTION TO SOFTWARE

ENGINEERING

11

Repositioning of Programming in

the Software Development

Universe

INTRODUCTION TO SOFTWARE

ENGINEERING

12

Hardware-Software: From Coupling

to Congress
• Earlier Software came with hardware; almost

no one sold or brought software by itself.

• Compare that with the present; probably the
operating system is the only piece of
Software now that comes with the hardware
we buy.

• Every other application software is acquired
and installed separately , often downloaded
from web for free.

Coupling between hardware and software
has now loosened.

INTRODUCTION TO SOFTWARE

ENGINEERING

13

Advent of High-Level languages

• What has changed over the past few
decades is how we communicate with
computer.

• What has brought about this change is the
vehicle of communication that is
LANGUAGE.

• One of the main objectives of any language is
to support levels of abstraction in
communication.

INTRODUCTION TO SOFTWARE

ENGINEERING

14

• High-level abstractions usually hide more

details and make it easier for the human

mind to broadly grasp an idea.

• High-level programming languages let one

be a programmer without being able to

communicate in machine or assemble

language

INTRODUCTION TO SOFTWARE

ENGINEERING

15

Advent of Personal Computer

• In the 1950s and 60s, a computer was a

considerably piece of equipment in price

and size. Academic departments or large

corporations owned them; it was really

unthinkable for individual users to have

their own computers

• But now a days, it is estimated that more

than one billion PCs are in use in the world

now.
INTRODUCTION TO SOFTWARE

ENGINEERING

16

Global Software Development

• As the web’s presence increased throughout
the 1990s and then into the new millennium,
software engineering became a truly global
enterprise.

• Global software development has deep
economic as well as social implications.

• Global software development has put
demands of cultural sensitivity, professional
flexibility and political awareness on the new
breed of the global software engineer.

INTRODUCTION TO SOFTWARE

ENGINEERING

17

Open Source

• Open source is about sharing the source code of
software developed by a particular group or
individual for free, so that others can use.

• Open source was nothing special in the initial era
of computing.

• Companies sold hardware, and the software with it
for free.

• When software become a commercial commodity
in its own right, large corporations made every
effort for the free flow of code.

INTRODUCTION TO SOFTWARE

ENGINEERING

18

Challenges in Software Engineering

Heterogeneity, Delivery and Trust

• Heterogeneity

– Developing techniques for building

software that can cope with heterogeneous

platforms and execution environments;

• Delivery

– Developing techniques that lead to faster

delivery of software;

• Trust

– Developing techniques that demonstrate

that software can be trusted by its users.

Software Development

Methodologies/

Software Development

Life Cycle Models

INTRODUCTION TO SOFTWARE

ENGINEERING

20

SOFTWARE

DEVELOPMENT LIFE

CYCLE MODELS
•A SDLC model covers the entire lifetime of a product.

•From birth of a commercial idea to final installation of last release.

•A SDLC model is a descriptive and diagrammatic representation of the
software life cycle.

•Represents all the activities required to make a software product transit
through its life cycle phases.

•It also captures the order in which these activities are to be undertaken.

21INTRODUCTION TO SOFTWARE

ENGINEERING

Software development

methodologies:

• Water fall

• Prototyping

• Spiral Development

• Iterative & Incremental Development

• Agile Development.

22INTRODUCTION TO SOFTWARE

ENGINEERING

Waterfall Model
• Provides a systematic approach to software

development.

• The process of software development is

represented by a sequence of steps.

• The sequential phases are what make this model

linear, simple and systematic in nature.

• Each phase must be completed before you can

move to next phase.

• This model is also known as the linear sequential

model or classical life cycle .

23INTRODUCTION TO SOFTWARE

ENGINEERING

Waterfall Model

24INTRODUCTION TO SOFTWARE

ENGINEERING

Phases of Waterfall Model

Software requirement analysis:

• In this Phase , the requirements for the software are

established through discussion with client and are then

documented.

• Constraints are identified.

• Requirements are analyzed.

• Finally, a requirement specification document is created

which serves the purpose of guideline for the next phase of

the model.

25INTRODUCTION TO SOFTWARE

ENGINEERING

Designing:

• If the first phase gets successfully

completed and a well thought out plan for the

software development has been laid then the

next step involves formulating the basic design

of the software on paper

• After the basic design gets approved, then a

more elaborated technical design can be

planned. Here the functions of each of the part

are decided.

INTRODUCTION TO SOFTWARE

ENGINEERING

26

System Design:
• The system has to be properly designed before any

implementation is started.

• This involves an architectural design which defines and
describes the main blocks and components of the
system, their interfaces and interactions.

• Hardware and Software components are identified

• E.g. this involves the definition or selection of a
computer platform, an operating system, other
peripheral hardware, etc. The software components
have to be defined to meet the end user requirements
and to meet the need of possible scalability of the
system.

INTRODUCTION TO SOFTWARE

ENGINEERING

27

Software Design:
• Based on the system architecture which

defines the main software blocks the software
design will break them further down into code
modules.

• All necessary system states like startup,
shutdown, error conditions and diagnostic
modes have to be considered and the activity
and behaviour of the software has to be
defined.

• The output of this phase is a Software Design
Document which is the base of the following
implementation work.

INTRODUCTION TO SOFTWARE

ENGINEERING

28

Implementation(Coding):

In this phase the actual coding of the software is done. The

design of the previous phase is converted into the code.

Testing:
• In this phase, the output generated is checked to ensure

that it matches the requirements.

• The programs developed in the previous phase are

checked for the logical and syntax errors.

29INTRODUCTION TO SOFTWARE

ENGINEERING

Maintenance and Support:

• The software developed needs

maintenance and support.

• To ensure that the system will continue to

perform as desired

• This refers to the changes as well as

new requirements in the software after

delivery.

INTRODUCTION TO SOFTWARE

ENGINEERING

30

Advantages of Waterfall Model

The Linear Sequential model offers the following

advantages:

• It is easy to understand and implement.

• It prohibits skipping any phase in the sequence.

• As everything is documented a new team member can easily

understand what's to be done.

• It is ideal for small projects and the requirements and

goals of the project are well established in advance.

31INTRODUCTION TO SOFTWARE

ENGINEERING

Disadvantages of Waterfall Model

The following are the disadvantages using Linear sequential model:

• If requirements change the Waterfall model may not work.

• Difficult to estimate time and cost for each stage of the development

process.

• The working version of the software is available to the customer

after testing. Therefore, if there is any major error it will remain till

end of the testing.

• Due to linear nature if any phase is not completed , the software

analyst and developers cannot proceed further.

32INTRODUCTION TO SOFTWARE

ENGINEERING

Prototyping Model

• In this model the developer and client interact to establish the
requirements of the software.

• Define the broad set of objectives.

• This is follow up by the quick design, in which the visible elements
of the software, the input and the output are designed..

• The final product of the design is a prototype.

• The client then evaluates the prototype and provides its
recommendations and suggestion to the analyst.

• The process continues in an iterative manner until all the user
requirements are met.

33INTRODUCTION TO SOFTWARE

ENGINEERING

Need for a prototype in software

development

This is a valuable mechanism for gaining better
understanding of the customer’s needs:

• How the screens might look like

• How the user interface would behave

• How the system would produce outputs

34INTRODUCTION TO SOFTWARE

ENGINEERING

Phases of Prototyping Model

INTRODUCTION TO SOFTWARE

ENGINEERING

35

Advantages of Prototyping Model

The following are the advantages of Prototyping model:

• Due the interaction between the client and developer right from the

beginning , the objectives and requirements of the software is well

established.

• Suitable for the projects when client has not clear idea about his

requirements.

• The client can provide its input during development of the

prototype.

• The prototype serves as an aid for the development of the final

product.

36INTRODUCTION TO SOFTWARE

ENGINEERING

Disadvantages of Prototyping

Model
The prototyping model has the following disadvantages.

• The quality of the software development is compromised
in the rush to present a working version of the software to
the client.

• The client look at the working version of the product at
the outset and expect the final version of the product to be
deliver immediately. This cause additional pressure over
the developers to adopt shortcut in order to meet the final
product deadline.

37INTRODUCTION TO SOFTWARE

ENGINEERING

Iterative & Incremental

Development Model
• This is a combination of both iterative

method and incremental build model for

development.

• Iteration refers to the cyclic nature of a

process in which activities are repeated in a

structured manner. And increment refers to

the quantifiable outcome of each iteration.

• The basic idea behind this method is to

develop a system through repeated cycles

(lterative) and in smaller portions (increment).

INTRODUCTION TO SOFTWARE

ENGINEERING

38

http://en.wikipedia.org/wiki/Iterative_method
http://en.wikipedia.org/wiki/Incremental_build_model

Iterative & Incremental

Development Model(cont..)

• Each iteration consists of all of the standard

Waterfall phases.

• At each iteration, design modifications are

made and new functional capabilities are

added.

OR

• Incremental development slices the system

functionality into increments (portions) by

prioritizing requirements. And, deliver a slice

of functionality in each increment.

INTRODUCTION TO SOFTWARE

ENGINEERING

39

http://en.wikipedia.org/wiki/Iteration

Iterative & Incremental Development

Model(cont..)

• In this model, the product is designed,

implemented, integrated and tested as a

series of incremental builds.

• Two key things: iterative refinement, where

the process improves what already exists

and is being done, and incremental

development, where the process results in

progress towards project objectives.

40INTRODUCTION TO SOFTWARE

ENGINEERING

Incremental Model (INM)

1-1 1-2 1-4 Final System1-3

Basic process

S/w Solution

Design

Req.

Analysis
CodingCoding Test

Next Increment

41INTRODUCTION TO SOFTWARE

ENGINEERING

Iterative and Incremental Model

Strengths

• Develop high-risk or major functions first

• Each release delivers an operational product

• Customer can respond to each build

• Uses “divide and conquer” breakdown of tasks

• Initial product delivery is faster

• Customers get important functionality early

• Risk of effect of changing requirements is

reduced

42INTRODUCTION TO SOFTWARE

ENGINEERING

Iterative and Incremental Model

Weaknesses

• Proper planning and designing is required.

• Requires early definition of a complete and
fully functional system to allow for the
definition of increments

• Total cost of the complete system is higher
than waterfall.

43INTRODUCTION TO SOFTWARE

ENGINEERING

Spiral model

INTRODUCTION TO SOFTWARE

ENGINEERING

44

• Each loop in a spiral represents a development phase

(and we can have any number of loops according to

the project). Each loop has four sections or quadrants :

1. To determine the objectives, alternatives and

constraints.

2. Risk analysis and evaluation of alternatives.

3. Execution of that phase of development.

4. Planning the next phase.

INTRODUCTION TO SOFTWARE

ENGINEERING

45

• First quadrant (Objective Setting)

– We try to understand the product objectives,
alternatives in design and constraints imposed
because of cost, technology, schedule, etc.

• Second Quadrant (Risk Assessment and
Reduction)

o A detailed analysis is carried out for each
identified project risk.
o We try to find which other approaches can be

implemented in order to fulfil the identified
constraints. Risk mitigation is in focus in this
phase

INTRODUCTION TO SOFTWARE

ENGINEERING

46

• Third Quadrant (Development and Validation)

o In this phase we develop the planned product. Testing is
also done. In order to do development, waterfall or incremental
approach can be implemented.

Fourth Quadrant (Review and Planning)

– Review the results achieved so far with the customer
and plan the next iteration around the spiral.

– Progressively more complete version of the software
gets built with each iteration around the spiral.

INTRODUCTION TO SOFTWARE

ENGINEERING

47

Why spiral model is called meta

model?

• Spiral model is also called as meta-model because in
a way it comprises of other models of SDLC.

• Here we do software development systematically over
the loops (adhering to waterfall approach) and at the
same time we make a prototype and show it to user
after completion of various phase (just in case of
prototype model).

• This way we are able to reduce risks as well as follow
systematic approach.

INTRODUCTION TO SOFTWARE

ENGINEERING

48

Advantages of Spiral Model

1) Spiral Life Cycle Model is one of the most flexible SDLC
models in place.

2) Project monitoring is very easy and effective. Each phase,
as well as each loop, requires a review from concerned
people. This makes the model more transparent.
3) Risk management is one of the in-built features of the
model, which makes it extra attractive compared to other
models.
4) Changes can be introduced later in the life cycle as well.
5) Project estimates in terms of schedule, cost etc become
more and more realistic.
6) It is suitable for projects where business needs may be
unstable.
7) A highly customized product can be developed using this.

INTRODUCTION TO SOFTWARE

ENGINEERING

49

http://www.ianswer4u.com/2011/12/earned-value-management-analysis.html

Disadvantages of Spiral Model

1) Cost involved in this model is usually high.
2) Skills required, to evaluate and review
project from time to time, need expertise.
3) Rules and protocols should be followed
properly to effectively implement this model.
Doing so, through-out the span of project is
tough.
4) It is not suitable for low risk projects.
5) Amount of documentation required in
intermediate stages makes management of
project very complex affair.

INTRODUCTION TO SOFTWARE

ENGINEERING

50

Software Development Process

• A process may be said to be a set of pre-

defined activities recommended to team(s)

of practitioners with the intention of

fulfilling an objective.

• It is a set of prescribed steps towards

performing some pre-defined task.

INTRODUCTION TO SOFTWARE

ENGINEERING

51

Different Software Development

Processes

• Personal Software Process

• Team Software Process

• Unified Software Process

INTRODUCTION TO SOFTWARE

ENGINEERING

52

Personal Software Process

• Self Improvement Process for individual

software Engineers to control, manage

and improve the way they work.

• NOT a set of specific guidelines.

• Provides data and techniques to choose

technologies and methods that are most

effective, and make routine activities more

predictable and efficient.

INTRODUCTION TO SOFTWARE

ENGINEERING

53

• Historical data can facilitate the

estimation of program size and

development time as well as give

valuable inputs into quality

improvement.

INTRODUCTION TO SOFTWARE

ENGINEERING

54

Process Elements

• Scripts:

Describe how a process is ‘enacted’ and to

point to standards, forms, guidelines and

measures whenever necessary.

• Forms:

Provide a placeholder for recording data.

INTRODUCTION TO SOFTWARE

ENGINEERING

55

Personal Process Elements(Cont.)

• Standards

To Guide activities and give a base for

verification of product and process.

• Process Improvement

Facilitate the improvement of an existing

process through a Process Improvement

Proposal.

INTRODUCTION TO SOFTWARE

ENGINEERING

56

Two Key points for creating a new

process

1. Consider the Current process as

well.

2. Recognize the ‘incremental’ nature of

process development needs.

INTRODUCTION TO SOFTWARE

ENGINEERING

57

Team Software Process

• Teams play a vital role in the production

of large-scale, industrial strength software

systems.

• Using TSP, individuals who have practiced

PSP can come together to form effective

teams.

INTRODUCTION TO SOFTWARE

ENGINEERING

58

What happens in TSP?

• As Team members learn best when a

defined process is followed which gives

rapid feedback.

TSP scripts and forms offer a defined,

measured and repeatable framework for

teams, enabling teams to deliver products

over a number of short development life

cycles and evaluate results after each

cycle.
INTRODUCTION TO SOFTWARE

ENGINEERING

59

What happens in TSP? (Cont.)

• As productive team work comes out of

clear goals, supporting work

environment and proper coaching and

leadership.

TSP provides supporting environment.

INTRODUCTION TO SOFTWARE

ENGINEERING

60

Unified Software Development

Process
• It is more than a single process

• Generic process framework that can be
specialized for a very large class of software
systems, for different application areas, different
type of organizations and project sizes.

• An end-to-end process template for building
software systems.

• Helps perform the workflows (activities that are
associated with software development,
Requirement analysis, design, Implementation,
Testing) and phases of software development in a
consistent and repeatable way.

INTRODUCTION TO SOFTWARE

ENGINEERING

61

• Disclaimer:

“This content is solely for the purpose of e-learning by students and any commercial use is not

permitted. The author does not claim originality of the content and it is based on the following

references”.

• REFERENCES:

• www.tutorialspoint.com

• www.wikipedia.com

• Books:

• Pressman R S, Software Engineering: A Practitioners Approach, McGraw Hill.

• Datta S, Software Engineering: Concepts and Applications, Oxford University Press, 2010.

INTRODUCTION TO SOFTWARE

ENGINEERING

62

