# **Basic concepts of Endocrinology**

Dr. Madhu Gupta

Assistant Professor Department of Zoology University of Lucknow Lucknow

Disclaimer: The e-content is exclusively meant for academic purposes and for enhancing teaching and learning. Any other use for economic/commercial purpose is strictly prohibited. The users of the content shall not distribute, disseminate or share it with anyone else and its use is restricted to advancement of individual knowledge. The information provided in this e-content is authentic and best as per my knowledge.

#### **Basic concepts of Endocrinology**

**Endocrinology** is the science of structure and functions of body's endocrine glands, regulation of their functions, diagnosis and treatment of endocrine pathologies.

**The Endocrine system** is the collection of cells and tissues (ductless/ endocrine glands) of the body that secrete hormones that the body uses for wide range of functions including growth, development, respiration, homeostasis, reproduction etc.

**Chemical messengers** are signaling molecules that serve to transmit a message either locally (neurotransmitters, autocrines, paracrines) or to distantly located cells/ tissues (hormones).

**Neurotransmitters** are released by axon terminals of neurons into the synaptic junctions and act locally to control nerve cell functions.

**Autocrines** are secreted by cells into the extracellular fluid and affect the function of the same cells that produced them by binding to cell surface receptors.

**Paracrines** are secreted by cells into the extracellular fluid and affect neighbouring cells of a different type.

**Cytokines** are peptides secreted by cells into the extracellular fluid and can function as autocrines, paracrines, or endocrine hormones. Examples of cytokines include the interleukins and other lymphokines that are secreted by helper cells and act on other cells of the immune system.

**Endocrine hormones** are released by glands or specialized cells into the circulating blood and influence the function of cells at another location in the body.

**Pheromones** {pherein, to bring} are specialized ectohormones that act on other organisms of the same species to elicit a physiological or behavioural response.

**Exocrines secretions** are released into the external environment through ducts.

**Neurohormones** are secreted by neurons into the circulating blood and influence the function of cells at another location in the body.

**Target cells/ tissues** possess receptors for different chemical messengers; respond to them through signal transduction and/or transmission.

**Cell surface receptors** are present on the plasma membrane of the cells; having an extracellular domain which binds chemical messengers, a trans-membrane domain and a cytosolic or intracellular domain.

**Intracellular receptors** are found in the cytosol or nucleoplasm; having a DNA binding domain (DBD), a hormone binding domain and domains for transcription activation functions.

Transcription factors are regulatory proteins that bind to DNA and alter gene expression.

**Feedback regulation** is a process whereby the end product of a metabolic pathway act as a modulator (positive or negative) and influences its own production by altering the activity of one or more enzymes involve in the pathway.

**Endocrine disorders** are caused by imbalances in hormone secretion or hormone action or non-responsiveness of target tissues.

**Syndrome** is a group of signs and symptoms that occur together and characterize a particular abnormality or condition.

## What makes a chemical a hormone?

- Hormones are secreted by a cell or group of cells.
- Hormones are secreted into the blood.
- Hormones are transported to a distant target.
- Hormones exert their effect at very low concentrations.

## **Classification of hormones**

Chemically and functionally, hormones can be divided into two broad classes: those that are soluble in lipids, and those that are soluble in water.

# **Lipid-Soluble Hormones**

- 1. Steroid hormones are derived from cholesterol.
- 2. **Two thyroid hormones (T3 and T4)** are synthesized by attaching iodine to the amino acid tyrosine. The presence of two benzene rings within a T3 or T4 molecule makes these molecules very lipid-soluble.
- 3. **The gas nitric oxide (NO)** is both a hormone and a neurotransmitter. Its synthesis is catalysed by the enzyme nitric oxide synthase.

Receptors for all lipid-soluble hormones are localized within cytoplasm or nucleus. Though some (e.g., estrogen) have cell surface receptors also.

# Water-Soluble Hormones

**4. Amine hormones** are synthesized by decarboxylating and otherwise modifying certain amino acids. They are called amines because they retain an amino group (—NH<sub>3</sub>). The catecholamines— epinephrine, norepinephrine, and dopamine—are synthesized by modifying the amino acid tyrosine. Histamine is synthesized from the amino acid histidine by mast cells and platelets. Serotonin and melatonin are derived from tryptophan.

- **5. Peptide hormones and protein hormones** are amino acid polymers. The smaller peptide hormones consist of chains of 3 to 49 amino acids; the larger protein hormones include 50 to 200 amino acids. Examples of peptide hormones are antidiuretic hormone and oxytocin; protein hormones include human growth hormone and insulin. Several of the protein hormones, such as thyroid-stimulating hormone, have attached carbohydrate groups and thus are glycoprotein hormones.
- 6. The eicosanoid hormones are derived from arachidonic acid, a 20-carbon fatty acid. The two major types of eicosanoids are prostaglandins and leukotrienes. The eicosanoids are important local hormones, and they may act as circulating hormones as well.

Receptors for all water-soluble hormones are trans-membrane located on the plasma membrane.

| Cell/Tissue/ | Hormone                                 | Chemical  | Main Functions                                | Target cell/ Tissue  |
|--------------|-----------------------------------------|-----------|-----------------------------------------------|----------------------|
| Gland        |                                         | Structure |                                               |                      |
| Pineal gland | Melatonin                               | Amine     | Circadian rhythms; immune function;           | Brain, other tissues |
|              |                                         |           | antioxidant                                   |                      |
| Hypothalamus | Thyrotropin-releasing hormone (TRH)     | Peptide   | Stimulates secretion of TSH and prolactin     | Anterior pituitary   |
|              | Corticotropin-releasing hormone (CRH)   | Peptide   | Causes release of ACTH                        | Anterior pituitary   |
|              | Growth hormone-releasing hormone        | Peptide   | Causes release of growth hormone              | Anterior pituitary   |
|              | (GHRH)                                  |           |                                               |                      |
|              | Growth hormone inhibitory hormone       | Peptide   | Inhibits release of growth hormone            | Anterior pituitary   |
|              | (GHIH) (somatostatin)                   |           |                                               |                      |
|              | Gonadotropin-releasing hormone          | Peptide   | Causes release of LH and FSH                  | Anterior pituitary   |
|              | (GnRH)                                  |           |                                               |                      |
|              | Dopamine or prolactin-inhibiting factor | Amine     | Inhibits release of prolactin                 | Anterior pituitary   |
|              | (PIF)                                   |           |                                               |                      |
| Anterior     | Growth hormone                          | Peptide   | Stimulates protein synthesis and overall      | Liver, Many tissues  |
| pituitary    |                                         |           | growth of most cells and tissues              |                      |
|              | Thyroid-stimulating hormone (TSH)       | Peptide   | Stimulates synthesis and secretion of thyroid | Thyroid gland        |
|              |                                         |           | hormones (thyroxine and triiodothyronine)     |                      |
|              | Adrenocorticotropic hormone (ACTH)      | Peptide   | Stimulates synthesis and secretion of         | Adrenal cortex       |
|              |                                         |           | adrenocortical hormones (cortisol, androgens, |                      |

Table 1: Endocrine glands, their secretions and functions

|             |                                     |         | and aldosterone)                                 |                   |
|-------------|-------------------------------------|---------|--------------------------------------------------|-------------------|
|             | Prolactin                           | Peptide | Promotes development of the female breasts       | Breast            |
|             |                                     |         | and secretion of milk                            |                   |
|             | Follicle-stimulating hormone (FSH)  | Peptide | Causes growth of follicles in the ovaries and    | Gonads            |
|             |                                     |         | sperm maturation in Sertoli cells of testes      |                   |
|             | Luteinizing hormone (LH)            | Peptide | Stimulates testosterone synthesis in Leydig      | Gonads            |
|             |                                     |         | cells of testes; stimulates ovulation, formation |                   |
|             |                                     |         | of corpus luteum, and estrogen and               |                   |
|             |                                     |         | progesterone synthesis in ovaries                |                   |
| Posterior   | Antidiuretic hormone (ADH) (also    | Peptide | Increases water reabsorption by the kidneys      | Kidney            |
| pituitary   | called vasopressin)                 |         | and causes vasoconstriction and increased        |                   |
|             |                                     |         | blood pressure                                   |                   |
|             | Oxytocin                            | Peptide | Stimulates milk ejection from breasts and        | Breast and uterus |
|             |                                     |         | uterine contractions                             |                   |
| Thyroid     | Thyroxine (T4) and triiodothyronine | Amine   | Increases the rates of chemical reactions in     | Many tissues      |
|             | (T3)                                |         | most cells, thus increasing body metabolic       |                   |
|             |                                     |         | rate                                             |                   |
|             | Calcitonin                          | Peptide | Promotes deposition of calcium in the bones      | Bone              |
|             |                                     |         | and decreases extracellular fluid calcium ion    |                   |
|             |                                     |         | concentration                                    |                   |
| Parathyroid | Parathyroid hormone (PTH)           | Peptide | Controls serum calcium ion concentration by      | Bone, kidney      |

|                |                             |         | increasing calcium absorption by the gut and |                       |
|----------------|-----------------------------|---------|----------------------------------------------|-----------------------|
|                |                             |         | kidneys and releasing calcium from bones     |                       |
| Thymus gland   | Thymosin, thymopoietin      | Peptide | Lymphocyte development                       | Lymphocytes           |
| Liver          | Angiotensinogen             | Peptide | Aldosterone secretion; increases blood       | Adrenal cortex, blood |
|                |                             |         | pressure                                     | vessels               |
|                | Insulin-like growth factors | Peptide | Growth                                       | Many tissues          |
| Adrenal cortex | Cortisol                    | Steroid | Has multiple metabolic functions for         | Many tissues          |
|                |                             |         | controlling metabolism of proteins,          |                       |
|                |                             |         | carbohydrates, and fats; also has anti-      |                       |
|                |                             |         | inflammatory effects                         |                       |
|                | Aldosterone                 | Steroid | Increases renal sodium reabsorption,         | Kidney                |
|                |                             |         | potassium secretion, and hydrogen ion        |                       |
|                |                             |         | secretion                                    |                       |
| Adrenal        | Norepinephrine, epinephrine | Amine   | Same effects as sympathetic stimulation      | Many tissues          |
| medulla        |                             |         |                                              |                       |
| Pancreas       | Insulin (β cells)           | Peptide | Promotes glucose entry in many cells, and in | Many tissues          |
|                |                             |         | this way controls carbohydrate metabolism    |                       |
|                | Glucagon (α cells)          | Peptide | Increases synthesis and release of glucose   | Many tissues          |
|                |                             |         | from the liver into the body fluids          |                       |
| Testes         | Testosterone                | Steroid | Promotes development of male reproductive    | Many tissues          |
|                |                             |         | system and male secondary sexual             |                       |

|          |                                    |         | characteristics                                |               |
|----------|------------------------------------|---------|------------------------------------------------|---------------|
| Ovaries  | Estrogens                          | Steroid | Promotes growth and development of female      | Many tissues  |
|          |                                    |         | reproductive system, female breasts, and       |               |
|          |                                    |         | female secondary sexual characteristics        |               |
|          | Progesterone                       | Steroid | Stimulates secretion of "uterine milk" by the  | Many tissues  |
|          |                                    |         | uterine endometrial glands and promotes        |               |
|          |                                    |         | development of secretory apparatus of breasts  |               |
| Placenta | Human chorionic gonadotropin (HCG) | Peptide | Promotes growth of corpus luteum and           | Corpus luteum |
|          |                                    |         | secretion of estrogens and progesterone by     |               |
|          |                                    |         | corpus luteum                                  |               |
|          | Human somatomammotropin            | Peptide | Probably helps promote development of some     | Many tissues  |
|          |                                    |         | fetal tissues as well as the mother's breasts  |               |
|          | Estrogens                          | Steroid | See actions of estrogens from ovaries          | Many tissues  |
|          | Progesterone                       | Steroid | See actions of progesterone from ovaries       | Many tissues  |
| Kidney   | Renin                              | Peptide | Catalyzes conversion of angiotensinogen to     | Many tissues  |
|          |                                    |         | angiotensin I (acts as an enzyme)              |               |
|          | 1,25-Dihydroxycholecalciferol      | Steroid | Increases intestinal absorption of calcium and | Intestine     |
|          |                                    |         | bone mineralization                            |               |
|          | Erythropoietin                     | Peptide | Increases erythrocyte production               | Bone marrow   |
| Heart    | Atrial natriuretic peptide (ANP)   | Peptide | Increases sodium excretion by kidneys,         | Kidneys       |
|          |                                    |         | reduces blood pressure                         |               |

| Stomach         | Gastrin               | Peptide | Stimulates HCl secretion by parietal cells     | GI tract              |
|-----------------|-----------------------|---------|------------------------------------------------|-----------------------|
| Small intestine | Secretin              | Peptide | Stimulates pancreatic acinar cells to release  | GI tract and pancreas |
|                 |                       |         | bicarbonate and water                          |                       |
|                 | Cholecystokinin (CCK) | Peptide | Stimulates gallbladder contraction and release | GI tract and pancreas |
|                 |                       |         | of pancreatic enzymes                          |                       |
| Adipocytes      | Leptin                | Peptide | Inhibits appetite, stimulates thermogenesis    | Hypothalamus, other   |
|                 |                       |         |                                                | tissues               |



Location of various endocrine glands and tissues

#### **References:**

- Guyton, Arthur C. Textbook of medical physiology, 11th Edition. Elsevier, Inc.
- Tortora, G J and Derrickson, B. Principles of Anatomy & Physiology, 13th Edition. John Wiley & Sons, Inc.
- Silverthorn, D U. Human physiology: an integrated approach, 6th Edition. Pearson Education, Inc.