FACULTY OF ENGINEERING AND TECHNOLOGY

UNIVERSITY OF LUCKNOW LUCKNOW

Course: Bachelor of Technology - 3rd Year

Subject: Graph Theory (CS-604)

Topic: FUNDAMENTAL CIRCUITS AND CUTSETS

Er. Priyanka Tripathi Assistant Professor Deptt. of C.S.E.

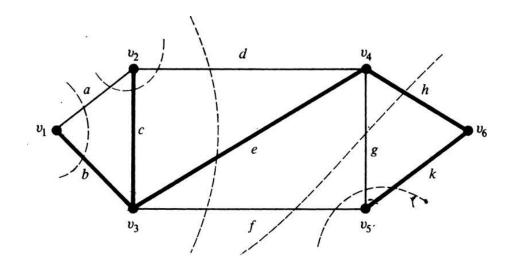
4-4. FUNDAMENTAL CIRCUITS AND CUTSETS

Consider a spanning tree T in a given connected graph G. Let c_i be a chord with respect to T, and let the fundamental circuit made by c_i be called Γ , consisting of k branches b_1, b_2, \ldots, b_k in addition to the chord c_i ; that is,

 $\Gamma = \{c_i, b_1, b_2, \dots, b_k\}$ is a fundamental circuit with respect to T.

Every branch of any spanning tree has a fundamental cut-set associated with it.

Let S_1 be the fundamental cut-set associated with b_1 , consisting of q chords in addition to the branch b_1 ; that is,


 $S1 = \{bl, cl, c2, ..., cq\}$ is a fundamental cut-set with respect to T.

Because of Theorem 4-3, there must be an even number of edges common to Γ and S1. Edge b1 is in both Γ and S1, and there is only one other edge in Γ (which is ci) that can possibly also be in S1. Therefore, we must have two edges b1 and ci common to S1 and Γ . Thus the chord ci is one of the chords c1, c2, . . .cq.

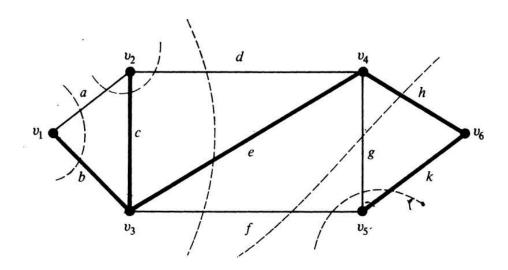
Exactly the same argument holds for fundamental cutsets associated with b_2 , b_3 , . . . , and b_k . Therefore, the chord c_i is contained in every fundamental cut-set associated with branches in Γ .

THEOREM 4-5

With respect to a given spanning tree T, a chord c_i that determines a fundamental circuit Γ occurs in every fundamental cut-set associated with the branches in Γ and in no other.

As an example, consider the spanning tree $\{b, c, e, h, k\}$, shown in heavy lines, in Fig. 4-3. The fundamental circuit made by chord f is

$$\{f, e, h, k\}.$$


The three fundamental cutsets determined by the three branches e, h, and k are

determined by branch e: {d, e, f}, determined by branch h: {f, g, h}, determined by branch k: {f, g, k},

Chord f occurs in each of these three fundamental cutsets, and there is no other fundamental cut-set that contains f. The converse of Theorem 4-5 is also true.

THEOREM 4-6

With respect to a given spanning tree T, a branch b_i that determines a fundamental cut-set S is contained in every fundamental circuit associated with the chords in S, and in no others.

For illustration, in the graph in Fig. 4-3, consider branch *e* of spanning tree {*b*, *c*, *e*, *h*, *k*}. The fundamental cut-set determined by *e* is

$$\{e, d, f\}.$$

The two fundamental circuits determined by chords d and f are

determined by chord *d*: {*d*, *c*, *e*}, determined by chord *f*: {*f*, *e*, *h*, *k*}.

Branch e is contained in both these fundamental circuits, and none of the remaining three fundamental circuits contains branch e.

Disclaimer: This content is solely for the purpose of e-learning by students and any commercial use is not permitted. The author does not claim originality of the content and it is based on the following references".

References

- Deo, N, Graph theory with applications to Engineering and Computer Science, PHI.
- Gary Chartrand and Ping Zhang, Introduction to Graph Theory, TMH.
- Robin J. Wilson, Introduction to Graph Theory, Pearson Education.